You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High specific power and cost effective solar array for spacecraft, lighter than air vehicles, and UAVs

    SBC: VectorSum Inc            Topic: AF13AT06

    ABSTRACT: Space solar power systems range in size from the International Space Station with 8 solar arrays producing 84,000 watts all the way down to body-mounted single wafers on individual cubesats. The current state-of-the-art relies on multi-junction gallium arsenide or inverted metamorphic cells affixed to rigid structural panels. The need for a low-mass, high energy output solar array for ...

    STTR Phase I 2014 Department of DefenseAir Force
  2. Development of light-weight, low-cost and high specific power organic solar modules with high radiation hardness

    SBC: SOLARMER ENERGY, INC.            Topic: AF13AT06

    ABSTRACT: Solar arrays play a key role in the operation of spacecrafts and unmanned aerial vehicles. Traditionally, inorganic semiconductor based solar arrays have been used for space applications because of their highest efficiencies. However, these solar arrays have several major limitations like extremely high cost, low specific power and large stowage volume. Organic photovoltaic (OPV) module ...

    STTR Phase I 2014 Department of DefenseAir Force
  3. Embedded Self-repairing Antenna Composite (ESAC)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: A13AT012

    The goal of the proposed research is to develop self-healing embedded communication antennas to be used in transparent armori.e., ground vehicle windows. Embedded antennas are known to delaminate from their host structures after impact; this allows an empty space to form around the antenna and as a result detunes the antenna. A sandwich structure will be designed, fabricated, and tested whereby th ...

    STTR Phase I 2014 Department of DefenseArmy
  4. Compressive Spectral Video in the LWIR

    SBC: PHYSICAL SCIENCES INC.            Topic: A13AT015

    Physical Sciences Inc. and Colorado State University will develop an innovative sensor that enables low-cost infrared hyperspectral imaging though the use of novel sampling algorithms which provide real-world chemical plume detection capability with compressed data and a hardware configuration which enables high frame rate capture of full 2D spatial and 1D spectral data. Compressive sensing techn ...

    STTR Phase I 2014 Department of DefenseArmy
  5. Printed, Flexible Ultracapacitors Based on Novel, High-Performance Carbon Nanomaterials (1000-262)

    SBC: SI2 TECHNOLOGIES, INC            Topic: A13AT003

    SI2 Technologies, Inc. (SI2) proposes to develop printed, high-performance ultracapacitors to meet the Army"s need for lightweight energy storage. SI2 will leverage its demonstrated expertise in ink jet printing and our partner"s expertise with carbon nanoparticle synthesis to develop low-cost, flexible, printed ultracapacitors. SI2 has considerable experience in the roll-to-roll deposition of ...

    STTR Phase I 2014 Department of DefenseArmy
  6. Durable Superhydrophobic Anti-icing Nanocomposite Coatings

    SBC: AGILTRON, INC.            Topic: N14AT013

    Agiltron will develop robust and affordable anti-icing and ice-phobic surfaces that are also transparent (>%80) in visible spectrum for superstructures of surface ships in Arctic and cold region operation. Leveraging Agiltron"s previous experiences in mechanically durable superhydrophibic nanocomposite coatings and optically transparent fluoropolymer resins, in collaboration with the Ice Research ...

    STTR Phase I 2014 Department of DefenseNavy
  7. Novel, Low-Cost Phased Arrays Manufactured by 3D Printing (1000-295)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N14AT021

    SI2 Technologies, Inc. (SI2) proposes to develop printed, high-efficiency phased arrays operating at Navy-relevant frequencies. The proposed development effort will include trade studies identifying the best printing technique or combination of techniques to meet the Navys phased array performance goals. The printed array will incorporate both printed radiating elements and an innovative printed p ...

    STTR Phase I 2014 Department of DefenseNavy
  8. Nonlinear-DSP-Enabled RF-Photonic Link

    SBC: RAM PHOTONICS LLC            Topic: N14AT023

    Digital equalizers have been the major enablers in RF communications in terms of managing component imperfections and channel impairments. Specifically, the ever increasing processing power of the dedicating computing processors has availed a steady increase in the ability of complex communication systems to deal with impairments as well as allowing higher capacities in the information transfer. O ...

    STTR Phase I 2014 Department of DefenseNavy
  9. Low Loss, High Average Power PM WDMs for Raman Fiber Lasers

    SBC: POLARONYX INC            Topic: AF13AT03

    ABSTRACT: We propose a new fiber WDM fabrication method for single mode high power fiber laser. Our new approach will enable kW operation for both single mode fiber WDM and PCF WDM. At the end of Phase I, a proof of concept experiment will be demonstrated. In phase II, we will target at delivery of a reliable prototypes for both step index fiber WDM and PCF WDM. BENEFIT: The WDM is a key compon ...

    STTR Phase I 2014 Department of DefenseAir Force
  10. Novel Extended-Zone High Power WDM Couplers

    SBC: Q-PEAK INCORPORATED            Topic: AF13AT03

    ABSTRACT: High power and low insertion loss WDM components will be developed. In manufacturing WDM components, solid core fibers in both polarization insensitive and polarization maintaining, will be pursued, along with photonics crystal fiber components. A range of fiber sizes and device specifications will be developed and commercially offered by Q-Peak. The component that we propose to develo ...

    STTR Phase I 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government