You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compressive Spectral Video in the LWIR

    SBC: PHYSICAL SCIENCES INC.            Topic: A13AT015

    Physical Sciences Inc. and Colorado State University will develop an innovative sensor that enables low-cost infrared hyperspectral imaging though the use of novel sampling algorithms which provide real-world chemical plume detection capability with compressed data and a hardware configuration which enables high frame rate capture of full 2D spatial and 1D spectral data. Compressive sensing techn ...

    STTR Phase I 2014 Department of DefenseArmy
  2. Printed, Flexible Ultracapacitors Based on Novel, High-Performance Carbon Nanomaterials (1000-262)

    SBC: SI2 TECHNOLOGIES, INC            Topic: A13AT003

    SI2 Technologies, Inc. (SI2) proposes to develop printed, high-performance ultracapacitors to meet the Army"s need for lightweight energy storage. SI2 will leverage its demonstrated expertise in ink jet printing and our partner"s expertise with carbon nanoparticle synthesis to develop low-cost, flexible, printed ultracapacitors. SI2 has considerable experience in the roll-to-roll deposition of ...

    STTR Phase I 2014 Department of DefenseArmy
  3. Durable Superhydrophobic Anti-icing Nanocomposite Coatings

    SBC: AGILTRON, INC.            Topic: N14AT013

    Agiltron will develop robust and affordable anti-icing and ice-phobic surfaces that are also transparent (>%80) in visible spectrum for superstructures of surface ships in Arctic and cold region operation. Leveraging Agiltron"s previous experiences in mechanically durable superhydrophibic nanocomposite coatings and optically transparent fluoropolymer resins, in collaboration with the Ice Research ...

    STTR Phase I 2014 Department of DefenseNavy
  4. Durable Elastomeric Low Adhesion Icephobic Surfaces

    SBC: HYGRATEK LLC            Topic: N14AT013

    In this Phase I effort, HygraTek will explore a novel anti-ice coating formulation to develop icephobic surfaces for naval ship superstructures, decks, equipment and vehicles on board naval ships, e.g. fighter jets, helicopters etc. HygraTek has recently developed a series of different environmentally safe, non-fluorinated, transparent, icephobic coatings. These coatings display the lowest ice-adh ...

    STTR Phase I 2014 Department of DefenseNavy
  5. Novel, Low-Cost Phased Arrays Manufactured by 3D Printing (1000-295)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N14AT021

    SI2 Technologies, Inc. (SI2) proposes to develop printed, high-efficiency phased arrays operating at Navy-relevant frequencies. The proposed development effort will include trade studies identifying the best printing technique or combination of techniques to meet the Navys phased array performance goals. The printed array will incorporate both printed radiating elements and an innovative printed p ...

    STTR Phase I 2014 Department of DefenseNavy
  6. Novel Extended-Zone High Power WDM Couplers

    SBC: Q-PEAK INCORPORATED            Topic: AF13AT03

    ABSTRACT: High power and low insertion loss WDM components will be developed. In manufacturing WDM components, solid core fibers in both polarization insensitive and polarization maintaining, will be pursued, along with photonics crystal fiber components. A range of fiber sizes and device specifications will be developed and commercially offered by Q-Peak. The component that we propose to develo ...

    STTR Phase I 2014 Department of DefenseAir Force
  7. Novel Sacrificial Fibers for Microvascular Composites with Embedded Thermal Management Devices

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF13AT09

    ABSTRACT: Aurora will demonstrate on our automated fiber placement (AFP) machine that we are able to lay up composite panels that contain sacrificial fibers that can be thermally decomposed to create a microvascular network of small cavities that allow the panel to act as a heat exchanger. The AFP machine is capable of producing composite parts from mold tools as large as 9"high by 18"wide by 56 ...

    STTR Phase I 2014 Department of DefenseAir Force
  8. Light-Weight, Solar Cells with High Specific Power and Conversion Efficiency

    SBC: AGILTRON, INC.            Topic: N14AT003

    Agiltron in collaboration with National Renewable Energy Laboratory (NREL) will develop a new class of high-efficiency and lightweight broadband inverted metamorphic multi-junction (IMM) solar cells for the uninterrupted flight missions of unmanned aerial vehicles (UAVs). The approach is closely coupled with Agiltrons extensive experience in high-transmittance broadband and wide-angle anti-reflect ...

    STTR Phase I 2014 Department of DefenseNavy
  9. Development of a Safer Lithium-ion (Li-ion) Battery for Naval Aircraft Applications Through Thermal Management Design

    SBC: EIC LABORATORIES, INC.            Topic: N14AT006

    EIC, in collaboration with NREL, proposes to develop safe, large-format aircraft Li-ion batteries where thermal propagation of an overheated cell to neighboring cells or group of cells will be prevented by integrating novel thermal management technologies.

    STTR Phase I 2014 Department of DefenseNavy
  10. Object Cueing Using Biomimetic Approaches to Visual Information Processing

    SBC: SOAR TECHNOLOGY INC            Topic: N14AT008

    Understanding imagery from unmanned automated systems in a timely fashion requires support systems for end users that can filter and preprocess massive data via complex vision and understanding. A new computer system that mimics both the bottom-up biological and top-down cognitive processes of the human visual system will provide breakthrough decision support for immediate imagery analysis. We pro ...

    STTR Phase I 2014 Department of DefenseNavy
US Flag An Official Website of the United States Government