You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Ceramic Matrix Composite Environmental Barrier Coating Durability Model

    SBC: MATERIALS RESEARCH & DESIGN INC            Topic: T1202

    As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites (CMCs), is critical for turbine hot-section static and rotating components. Such advanced materials have demonstrated the promise to significantly increase the engine temperature capability relative to conventional super alloy metallic ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  2. Modified Acoustic Emission for Prognostic Health Monitoring

    SBC: Prime Photonics, LC            Topic: T1201

    Prime Photonics proposes to team with Dr. Duke of Virginia Tech to develop a multi-mode, enhanced piezoelectric acoustic emission sensing system to couple large damage events to local distribution of damage accommodation. Our system will be centered around an instrument designed to accept the output of a piezoelectric transducer sensitive to in-plane acoustic events. The signal processing path w ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  3. Subsurface Prospecting by Planetary Drones

    SBC: Astrobotic Technology, Inc.            Topic: T402

    Recurring slope linae (RSL), such as those in Newton Crater on Mars, methane plumes in hazardous Martian terrain, and water ice discovered during the LCROSS experiment in the Moon?s permanently shadowed Cabeus Crater drive the need for a new generation of robotic explorers that access, probe, extract, and return resources from extreme terrains. These robots must possess sufficient system-level aut ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  4. Extreme Environment Ceramic Energy Harvesting/Sensors

    SBC: Solid State Ceramics, Inc.            Topic: T301

    The program is focused on developing high temperature energy harvesting devices that can convert waste energy (primarily vibratory) such as the mechanical disturbance from thrusters as to include waste exhaust created during operational conditions. The program focus is on developing very high performance devices that are extremely robust and that can continuously operate at up to 500 C. The purpos ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  5. Innovative Wound Regeneration Support Approaches to Enable Rapid Treatment of Wounded Warfighters

    SBC: Zetroz Systems LLC            Topic: A14AT016

    Ultrasound is a therapeutic modality which has been used clinically for 60 years, but has been limited in practice by the complexity of the technology. Recent research has allowed for the development of a portable, wearable, long duration, low intensity therapeutic ultrasound system. The system is powered by battery, and can be applied by a user to deliver up

    STTR Phase II 2016 Department of DefenseDefense Health Agency
  6. Physics-Based Modeling Tools for Life Prediction and Durability Assessment of Advanced Materials

    SBC: ELDER RESEARCH INC            Topic: T1202

    The technical objectives of this program are: (1) to develop a set of physics-based modeling tools to predict the initiation of hot corrosion and to address pit and fatigue crack formation in Ni-based alloys subjected to corrosive environments, (2) to implement this set of physics-based modeling tools into the DARWIN probabilistic life-prediction code, and (3) to demonstrate corrosion fatigue crac ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  7. Passive Wireless Sensor System for Space and Structural Health Monitoring

    SBC: Aviana Molecular Technologies, LLC            Topic: T1201

    Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring (SHM). SAW sensors are lightweight, passive (battery-less), simple, reliable, scalable, sensitive, do not disturb the operating environment, can be permanently placed on the critical components, allow quick and inexpensive acquisition of ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. Development of an Advanced Diamond TEC Cathode

    SBC: IOP Technologies LLC            Topic: T603

    NASA recognizes the importance of conservation, smart utilization and reuse of resources for their deep space missions to address the need for regeneration of air, water and waste with highly reliable systems to reduce mission payload. Additionally, energy for life support and other systems needs to be obtained from renewable energy sources or waste streams. In order to address NASA's requirements ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  9. Ultra-Compact Transmitter for Space-Based Lidar

    SBC: FIBERTEK, INC.            Topic: T901

    Fibertek, Inc. in partnership with researchers at the Pennsylvania State University Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) are proposing to develop a state of the art, space-qualifiable laser transmitter that meets the requirements of the flash lidar transmitter defined in the 2016 STTR subtopic T9.01, Navigation and Hazard Avoidance Sensor Technolog ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. Fiber Optic Health Monitoring of 3D Woven Preforms and Composites Employing Structurally Integrated Sensors

    SBC: MATERIALS RESEARCH & DESIGN INC            Topic: T1201

    Woven TPS (WTPS) is an attractive option for thermal protection because it allows for a design to be tailored to a specific mission ? material composition can be adjusted by weaving different fiber types together and controlling their placement using computer-controlled, automated, 3D weaving technology. NASA?s HEEET program is responsible for the development of WTPS, with the objective of enablin ...

    STTR Phase I 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government