You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. In-Situ Monitoring during HVPE for the Producibility of Semi-Insulating GaN

    SBC: KYMA TECHNOLOGIES, INC.            Topic: MDA09T001

    This program will utilize in-situ monitoring devices during the HVPE growth of GaN in conjunction with thermal and gas flow modeling, to establish tighter tolerances over growth variables such as substrate temperature and growth rate, which will lead to more robust, producible HVPE GaN growth processes, and in turn increase large area wafer yield and boule thicknesses. The in-situ monitoring dev ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  2. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: MDA09T003

    The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. AlInN/GaN HFET over Free-Standing bulk GaN substrates

    SBC: Sensor Electronic Technology, Inc.            Topic: MDA09T001

    SET, Inc. proposes to develop lattice-matched AlInN/GaN HFET structure on free-standing GaN substrate. By employing native low-defect GaN substrates and by using lattice-matched heterostructures with the incorporation of indium, we expect dramatic enhancement of these HFET in power density, reliability and high frequency operation. Homoepitaxial growth on native substrate and the use of AlInN/GaN ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Development for Radiation Hardened Advanced Electronic Circuits

    SBC: United Silicon Carbide, Inc.            Topic: MDA09T006

    In response to SBIR topic MDA09-T006, USCI proposes to develop the first medium-level integrated circuit for radiation-tolerant applications. The advanced integrated circuit will be demonstrated based on a novel yet simple design SiC transistor that has the potential to provide a factor of 10X improvement in performance comparison to state-of-the-art. The SiC transistor can be fabricated by a subs ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  5. Low Cost, High Performance Transmit/Receive Integrated Circuits on a Single Chip

    SBC: Versaq            Topic: MDA09T004

    In the proposed effort we plan to build a fully-operational X-band T/R Integrated Circuit. One of the key-elements to building a fully operational radar is the requisite RF electronics that feed to each antenna element. Historically, radar transmit/receive (T/R) modules have been implemented as complex, multi-chip GaAs MMICs, resulting in very high cost per T/R module, high launch weight, and high ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. Reconfigurable Course-Grain Analog Arrays

    SBC: Triad Semiconductor, Inc.            Topic: MDA08T007

    Development of configurable analog array architectures that meet a wide range MDA system application. Development and implementation of radiation hard by design techniques for analog circuits at the physical layout and circuit design levels.

    STTR Phase I 2009 Department of DefenseMissile Defense Agency
  7. Snapshot Raman Spectral Imager

    SBC: Applied Quantum Technologies            Topic: A09AT009

    Applied Quantum Technologies along with its university partner Duke University propose a coded-aperture, multi-aperture snapshot Raman imager. By combining an innovative optical design and advanced compressed sensing algorithms, a snapshot system provides dwell times much shorter than conventional slit-based or tunable-filter based spectral imagers. A short-wave infrared excitation source allows f ...

    STTR Phase I 2009 Department of DefenseDefense Advanced Research Projects Agency
  8. Sputter Synthesis of Bulk Aluminum Nitride

    SBC: Carolina Sputter Solutions            Topic: N/A

    The proposed research will demonstrate the feasibility of using a novel physical vapor deposition (PVD) technique for bulk growth of aluminum nitride(AlN). We have developed a sputter source which demonstrates the high growth rates needed for growing bulk aluminum nitride. In comparison with other bulk growth processes this novel PVD process has the advantages of a controlled processing environmen ...

    STTR Phase I 1998 Department of DefenseMissile Defense Agency
  9. High Power, Modulation Doped AlGaN/GaN FETs on Melt Grown, Zinc Oxide Bulk Substrates

    SBC: CERMET, INC.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  10. Development of a Truly Lattice-Matched III-Nitride Technology for

    SBC: CERMET, INC.            Topic: N/A

    Cermet, in collaboration with researchers at Georgia Institute of Technology, proposes to implement a lattice matched III-Nitride technology using existing substrates. The implementation of a lattice matched substrate promises to produce near dislocationfree III-Nitrides for the first time while the use of an existing substrate technology dramatically lowers development cost and reduces the devel ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government