You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Revolutionary Airlift Innovation

    SBC: LOGISTIC GLIDERS INC.            Topic: ST14B004

    We propose to mature LG-X glider technology by manufacturing full-scaled prototypes and characterizing them in land-based flight-testing by using commercial aircraft to drop the gliders. Validated components such as the landing parachute, folding wing mechanism, and autopilot control system will undergo integrated flight-testing. Logistic Gliders will provide a considerable cost share to support ...

    STTR Phase II 2016 Department of DefenseDefense Advanced Research Projects Agency
  2. Table- top 3-D real time holographic nanoscope

    SBC: XUV LASERS, INC.            Topic: ST15C001

    We propose to develop a high-resolution soft x-ray nanoscope based on Fourier Transform Holography which has the very important advantage for real time visualization: 3D images are nearly instantaneously retrieved with a simple 2D Fast Fourier Transform operation. The table-top soft x-ray nanoscope will use for illumination a compact high average power soft x-ray laser that generates high e ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  3. Real time Tabletop X-ray Nanoscope based on High Harmonic Light Sources

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: ST15C001

    N/A

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  4. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  5. Portable and Automated Radiation Effects Test Structures for Advanced Technology Nodes

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: DTRA16A003

    Micro-RDC will develop portable radiation effects test structures that scales to new process nodes. These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level. The production of the chosen structures and the development of software to extract the model parameters will form the framework. A suit ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Rapid Development of Weapon Payloads via Additive Manufacturing

    SBC: MATSYS INCORPORATED            Topic: DTRA16A001

    MATSYS proposes to adapt emerging additive manufacturing techniques (so-called 3-D Printing) for use with reactive structural materials and demonstrate this capability to rapidly fabricate reactive case. Our concept incorporates two major manufacturing steps: 3D printing of green compacts from pure Al or Al-based reactive powder blend; and Microwave (MW) sintering of green compacts into net-shaped ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  7. Self-fragmenting Structural Reactive Materials (SF-SRM) for High Combustion Efficiency

    SBC: MATSYS INCORPORATED            Topic: DTRA16A002

    MATSYS proposes to develop, test and evaluate a scalable metal-based reactive structural material that will self-fragment to micron or sub-micron scale fuel particles when subjected to explosive shock loading, resulting in significantly enhanced metal combustion efficiency. Use of reactive material casings offers the potential for several-fold increases in blast and overpressure by generating rapi ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Analog Co-Processors for Complex System Simulation and Design

    SBC: Arete Associates            Topic: ST15C002

    It has long been known that analog computers can be faster and more power efficient than digital processors by many orders of magnitude. Until the 1970s analog computers were the dominant controllers in most industrial and military applications. Even today digital processors are still slower and more power consumptive than analog, but offer much more flexibility (programmability) and precision. ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  10. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
US Flag An Official Website of the United States Government