You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Characterization of Failure Modes for Mechanical Components

    SBC: Thornton Tomasetti, Inc.            Topic: N14AT011

    This proposal describes a new process to facilitate the shock qualification of submarine components, taking advantage of the similarities between readily observable design features of these components, and correlating them to success or failure in Navy shock qualification tests. To realize this Design Feature Similarity (DFS) approach, we will develop a set of criteria based on this type of readil ...

    STTR Phase I 2014 Department of DefenseNavy
  2. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: Intelligent Automation, Inc.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Navys environment foot print consists of both emissions and noise generated every day around the world. Additionally, noise is an important issue for the Navy due to the adverse effect ...

    STTR Phase I 2014 Department of DefenseNavy
  3. Wideband RF Photonic Link with Real-Time Digital Post Processing

    SBC: Pharad, LLC            Topic: N14AT023

    Pharad is teaming with the Applied Physics Laboratory of The Johns Hopkins University to propose and investigate the feasibility of wideband (VHF to SHF) RF-to-digital photonic link architectures with real-time digital signal processing (DSP) that can meet the stringent performance metrics of military systems. The key requirements for our wideband DSP linearized RF-to-digital photonic link include ...

    STTR Phase I 2014 Department of DefenseNavy
  4. Freeze Casting of Tubular Sulfur Tolerant Materials for Solid Oxide Fuel Cells

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: A14AT011

    This STTR project seeks to overcome the performance limitations of experimental sulfur tolerant SOFC materials by combining two elements of efficient SOFC design: 1) micro-tubular arrays (OD

    STTR Phase I 2014 Department of DefenseArmy
  5. Superconducting Parametric Amplifier

    SBC: HYPRES INC            Topic: A14AT010

    HYPRES, in collaboration with MIT Lincoln Laboratory and ISQC, proposes to transition superconducting parametric amplifier technology into a robust line of products. In Phase I, we will develop three varieties of superconducting low-noise amplifiers (LNAs) in compact cryogenic microwave packages. These are two types of standing wave devices, lumped-element Josephson parametric amplifier (LJPA) and ...

    STTR Phase I 2014 Department of DefenseArmy
  6. Circadian Rhythm Monitoring and Regulation Device (CMR)

    SBC: Intelligent Automation, Inc.            Topic: A14AT009

    The Department of Defense is concerned with circadian rhythm misalignments as they are known to affect judgment, psychomotor skills, and can lead to Post-Traumatic Stress Disorder (PTSD). At present, there is no comprehensive unobtrusive and easy-to-use solution that measures the circadian misalignment and automatically administers the appropriate therapy for realignment of circadian rhythm. Intel ...

    STTR Phase I 2014 Department of DefenseArmy
  7. Ultra-Coherent Semiconductor Laser Technology

    SBC: Morton Photonics Incorporated            Topic: A14AT005

    In this STTR program, technology created at the University of California at Santa Barbara (UCSB) to fabricate silicon photonics based integrated laser devices, including wafer bonded gain elements, will be utilized to develop ultra-coherent integrated laser devices that are widely tunable. Novel laser designs developed by Morton Photonics, taking advantage of ultra-low loss microresonator based f ...

    STTR Phase I 2014 Department of DefenseArmy
  8. Two-Dimensional MoS2 Transistors for Low-Power RF Applications

    SBC: N5 SENSORS INC            Topic: A14AT008

    The proposed project will demonstrate high-frequency (0.5 5 GHz) operation of novel 2-dimensional semiconductor molybdinum disulphide (MoS2) based field-effect transistors. Our project will focus on innovative growth startegies for large-area growth of MoS2 along with novel device design methodologies which will consider the tradeoffs between monolayer and multilayer device designs for high-frequ ...

    STTR Phase I 2014 Department of DefenseArmy
  9. Terrain Aware Mobility Planning (TAMP)

    SBC: ROBOTIC RESEARCH OPCO LLC            Topic: A14AT018

    Robotic Research, LLC and Jet Propulsion Laboratory (JPL) at the California Institute of Technology are teaming their efforts under the Army STTR topic A14A-T018"Intelligent Terrain-Award Navigation and Mobility of Unmanned Ground Vehicles Operating Under Varying Degrees of Autonomy"to develop an unmanned terrain-aware navigation and mobility system that would enhance soft soil mobility and reduce ...

    STTR Phase I 2014 Department of DefenseArmy
US Flag An Official Website of the United States Government