You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Compressive Sampling Applied to Millimeter-wave Single Detector Imagers

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: A14AT003

    In Phase I, TRI/Austin teamed with Missouri S&T to investigate and refine several technologies, i.e. synthetic aperture radar (SAR) imaging algorithms; advanced Compressive Sensing (CS) techniques; innovative imaging hardware; under-sampling; etc, as they apply to high speed millimeter wave imaging. These investigations were supported by both modeling and empirical testing. The Phase I results c ...

    STTR Phase II 2016 Department of DefenseArmy
  3. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  4. Electronically Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: Pranalytica, Inc.            Topic: A14AT015

    In response to the Army STTR Topic A14A-T015 solicitation for tunable high-power LWIR lasers for standoff detection applications, Pranalytica proposed to develop a compact, rugged and highly reliable wavelength tunable quantum cascade laser (QCL) module delivering over 5W of peak power and over 0.5W of average power in the spectral region spanning from 7 to 11m. The proposed approach is based on a ...

    STTR Phase II 2016 Department of DefenseArmy
  5. EMS Monitor & Broadcast Training Capacity Enhancement

    SBC: KERBEROS INTERNATIONAL, INC.            Topic: A15AT008

    Americas current electronic warfare (EW) capabilities are insufficient for the modern and future battlefield. In order to safeguard against radio-controlled threats and disrupt enemy communications, our current EW systems blindly jam broad swaths of the electromagnetic spectrum (EMS), an approach that also disrupts GPS and blue force data and voice communications. In order to broadband jam vast a ...

    STTR Phase II 2016 Department of DefenseArmy
  6. Field Drug Identification Kit

    SBC: SensoDX II, LLC            Topic: A16AT008

    Illicit drug trafficking has increasingly been used to fund terrorist groups since the end of the Cold War. As illicit drugs increasingly finance terrorism, soldiers in the U.S. Army are increasingly playing an active role in identifying these drugs in difficult and demanding environments. Unfortunately, these devices have many shortcomings, such as being too expensive, bulky and heavy, being non- ...

    STTR Phase I 2016 Department of DefenseArmy
  7. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
  8. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
  9. Identification of Multiple Illicit Drugs Using a Handheld Detector Based on Chemiresitive Sensor Arrays

    SBC: Next Dimension Technologies, Inc.            Topic: A16AT008

    Next Dimension Technologies and Caltech will jointly develop a handheld detector to meet the Armys need for a field-based illicit drug identification system. The project will focus on the design and development of a dual-mode chemiresistive sensor array capable of detecting key drugs of interest, including synthetic cannabinoids and opioids. Novel sensing materials, with enhanced chemical sensit ...

    STTR Phase I 2016 Department of DefenseArmy
  10. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government