You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  2. Embedded Sensors for Flight Test (Every Aircraft a Test Aircraft)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF14AT01

    Increasing system capabilities in terms of weapon systems, ISR payloads, GNC, etc., enabled by smaller and more capable electronics systems have led to a trend for overall size reduction in military aircraft. This has resulted in a reduction in the avail...

    STTR Phase II 2016 Department of DefenseAir Force
  3. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT004

    TDA has teamed up with Lawrence Livermore National Laboratory as its research institution collaborator to address the target STTR topic objective of quantifying the uncertainties in the mechanical behavior of the AM parts. To quantify uncertainties by minimizing both the computational burden and expensive testing and also overcoming the IP concerns, we propose a novel approach with three layered i ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Engineered DLC based Wear Resistant Coating For Extended Life Foil-Air Bearings

    SBC: NOKOMIS INC            Topic: N16AT005

    Foil/air bearings have the benefit of negligible friction and wear once sufficient airflow is obtained; however, during spin up and spin down these bearings are subject to contact with the rotating surfaces upon which they act and thus are subject to frictional losses and wear. Modern air-cycle machines (ACMs) depend on solid lubricant based coating materials such as polyimide coatings to protect ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  10. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government