You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Analysis and Application of Treatments to Mitigate Exfoliation Corrosion (Delamination) of 5XXX Series Aluminum

    SBC: OCEANIT LABORATORIES INC            Topic: N18AT016

    Oceanit proposes to research and develop chemical or non-chemical methods and processes to impart surface morphology modifications to aluminum-magnesium (Al-Mg) alloys to mitigate and increase the exfoliation corrosion resistance.

    STTR Phase I 2018 Department of DefenseNavy
  2. Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases

    SBC: CFD RESEARCH CORPORATION            Topic: CBD18A001

    In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens,whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial andalphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable and ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  3. Non-Destructive Evaluation (NDE) of Missile Launcher Ablatives

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N18AT011

    MK-41 VLS exhaust paths are lined with ablative insulation that chars and ablates with each missile firing. There is no way to inspect, in-situ, chemical and physical changes to the ablatives. Such measurements are complicated because ablative materials: vary with location, are low density, and degrade non-linearly with firings.Failure of VLS insulation is not an option – but the usage life of t ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    The US Navy operates a vast fleet of combat and support vessels with complex power control systems under the control and decision authority of human operators. Several current resources such as SPY-1D radar and Vertical Launch System (VLS) and future resources such as railgun, AMDR, and high energy laser (HEL) are energy hungry, exceeding current and planned power generation capability when deploy ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Hierarchical, Layout-Aware, Radiation Effects Tools Vertically Integrated into an EDA Design Flow for Rad-Hard by Design

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    The goal of this workis to establish a radiation-aware capability in a commercial EDA design flow that will enable first-pass success in radiation resiliency for DoD ASIC designs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications.Such an integrated capability does not presently exist.The ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  6. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., A2Z Innovations, Inc., and the University of Alabama Aerospace Research Center (UAH/ARC) have teamed together to design, develop, and perform ground-based-demonstrations of a High-Speed Simultaneous Multiple Object Detection (HS-SMOD) System for MDA. The HS­SMOD system uses a simple but innovative technique of a passive fiber-optic grid and high-speed COTS opto-electr ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  7. Environmental Temperature Sensing Tow Cable

    SBC: MAKAI OCEAN ENGINEERING INC            Topic: N18AT017

    The U.S. Navy currently utilizes a number of towed systems from surface ship and submarines for sensing and communication applications. In a number of these cases, a tow cable extends either down from a surface ship or up from a submarine through the upper part of the water column where seawater temperature can be both highly variable vs. depth and dynamic in time and geographic location. Having a ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Particle Ingestion Engine Sensor

    SBC: LYNNTECH INC.            Topic: N18AT023

    Sand, dust and ash particles have significant detrimental effects on turbine engine performance and durability. Currently there are no sensors capable of recording data such as dust composition, particle size distribution, total mass, etc. and have sufficient durability for flight conditions. Lynntech and Texas A&M University propose to develop a sensor system based on a spectroscopic method integ ...

    STTR Phase I 2018 Department of DefenseNavy
  9. A Hybrid Multifunctional Composite Skin Material by Standard Prepreg Lay-up Process

    SBC: KAI, LLC            Topic: N18AT024

    The objective of this project is to develop a hybrid, multifunctional composite material that improves the thermal and chemical stability, and surface durability of traditional carbon fiber reinforced polymer (CFRP) composites. By using a standard prepreg lay-up process, in which a flexible conductive ceramic thin layer is bonded directly onto the outmost layer of polymer composites to ensure the ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Cubic Boron Nitride Claddings for Friction Stir Tooling

    SBC: Plasma Processes, LLC            Topic: N18AT026

    Friction stir welding (FSW) is an attractive joining method where high strength low porosity welds can be attained. However, the high temperatures and forces required for welding high strength materials like steel require the use of exotic tools. Cubic boron nitride (cBN)-based tools offer attractive tool wear characteristics in steels, but are very costly. Conversely, refractory metal alloys are ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government