You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. An End-To-End Microfluidic Platform for Engineering Life Supporting Microbes in Space Exploration Missions

    SBC: HJ Science & Technology, Inc.            Topic: T601

    HJ Science & Technology (HJS&T) and Lawrence Berkeley National Laboratory (LBNL) propose a highly integrated, programmable, and miniaturized microfluidic automation platform capable of running rapid and complex synthetic biology and bioengineering processes for engineering life supporting microbes in space exploration missions. Our approach combines the microfluidic automation technology of HJS&T ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  2. Advanced Algorithms and Controls for Superior Robotic All-Terrain Mobility

    SBC: ProtoInnovations, LLC            Topic: T1101

    ProtoInnovations, LLC (PI) and the Massachusetts Institute of Technology (MIT) have formed a partnership to research, develop, and experimentally characterize a suite of robotic controls to significantly improve the safety, mean travel speed, and rough-terrain access of wheeled planetary rovers. In meeting this goal we have been developing algorithms for all-terrain adaptive locomotion which inclu ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  3. Perception and Navigation for Exploration of Shadowed Domains

    SBC: Astrobotic Technology, Inc.            Topic: T1101

    On-the-ground confirmation of lunar ice will transform space exploration, as ice can provide fuel to support far-reaching exploration and enable commercial endeavors. Evidence from satellite observations strongly supports the presence of polar ice, but driving and excavation are required to confirm presence, measure distribution, and extract resources. In-situ resource extraction at the lunar pol ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  4. Long-Range Terrain Characterization for Productive Regolith Excavation

    SBC: Astrobotic Technology, Inc.            Topic: T402

    The proposed research will develop long-range terrain characterization technologies for autonomous excavation in planetary environments. This work will develop a machine learning framework for long-range prediction of both surface and subsurface terrain characteristics that: (1) indicate the excavation-value of the material and (2) describe how hazardous terrain is to a robotic excavator. Factors ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  5. Integrated Reacting Fluid Dynamics and Predictive Materials Degradation Models for Propulsion System Conditions

    SBC: CFD Research Corporation            Topic: T1202

    Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on general materials properties to determine fluid structure interactions. This introduces uncertainty when modeling extreme conditions, where materials degrade and properties may change as a consequence. This also limits the use of CFD as a ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  6. Sensing Aware Autonomous Communications System

    SBC: Space Micro Inc.            Topic: T501

    Space Micro and its partner research institution, the University of Arizona bring together innovations in channelization and network protocol development. Together, these innovations will provide improved hopping radios (with digital, rapidly reconfigurable implementation, wider bandwidth and reduced overhead penalty for hopping) and improved spectrum and link quality sensing. We will demonstrate ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  7. Ceramic Matrix Composite Environmental Barrier Coating Durability Model

    SBC: MATERIALS RESEARCH & DESIGN INC            Topic: T1202

    As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites (CMCs), is critical for turbine hot-section static and rotating components. Such advanced materials have demonstrated the promise to significantly increase the engine temperature capability relative to conventional super alloy metallic ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  8. Dynamic ASE Modeling and Optimization of Aircraft with SpaRibs

    SBC: M4 ENGINEERING, INC.            Topic: T401

    In aircraft design, reducing structural weight is often a prime objective, while various constraints in multiple disciplines, such as structure, aerodynamics and aeroelasticity should be imposed on the aircraft. Therefore, engineers need optimization tools to incorporate the multidisciplinary constraints using appropriate fidelity during the early stages of concept design. Classic structural desi ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  9. Gust Load Estimation and Rejection With Application to Robust Flight Control Design for HALE Aircraft

    SBC: Systems Technology, Inc.            Topic: T401

    High Altitude Long Endurance (HALE) aircraft have garnered increased interest in recent years as they can serve several purposes, including many of the objectives of satellites while incurring a fraction of the cost to deploy. Examples applications include Intelligence, Surveillance, and Reconnaissance, communications relay systems, and environmental and atmospheric sensing. The requirements for H ...

    STTR Phase I 2015 National Aeronautics and Space Administration
  10. Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design

    SBC: M4 ENGINEERING, INC.            Topic: T401

    We propose the development of a modern panel code for calculation of steady and unsteady aerodynamic loads needed for dynamic servoelastic (DSE) analysis of flight vehicles. The code will be especially tailored to be robust, reliable, and integrated with the NASA Object Oriented Optimization (O3) system through selection of analysis methods, file formats, and computing environment, allowing it to ...

    STTR Phase I 2015 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government