You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Polychromatic guide-stars using novel optically pumped semiconductor disk lasers

    SBC: Crystalline Mirror Solutions, LLC            Topic: AF17AT005

    During the last two decades, vertical-external-cavity surface-emitting lasers (VECSELs) have emerged as excellent high-power laser sources that combine diode-pumping, broad-pump tolerance, wavelength selectivity, narrow linewidth, broad tunability, high beam quality, compactness, and efficiency into one attractive package. These characteristics make them an ideal candidate for use as more economic ...

    STTR Phase I 2017 Department of DefenseAir Force
  2. Alternative Methods for Creating a Sodium Guidestar

    SBC: Arete Associates            Topic: AF17AT005

    Adaptive Optics allow ground-based astronomical observatories to overcome atmospheric distortion limited observation by using natural and artificial guide stars to measure the distortion. Sodium-layer guide stars provide near all-sky coverage for high resolution astronomy. Over the last 20 years, Optically Pumped Semiconductor Laser (OPSL), also referred to as Vertically Extended Cavity Surface ...

    STTR Phase I 2017 Department of DefenseAir Force
  3. Mobile Atmospheric Turbulence-Refractivity Sensor

    SBC: G. A. Tyler Associates, Inc.            Topic: AF17AT008

    In this effort, tOSC and the University of New Mexico COSMIAC (Configurable Space Microsys- tems Innovation Applications Center) will combine to generate a Target-in-the-Loop (TIL) system concept that can simultaneously measure the strength of atmospheric turbulence and scintillation, as well as the refractivity occurring at the measurement time. For this system concept, we will leverage existing ...

    STTR Phase I 2017 Department of DefenseAir Force
  4. Broadband Low-Coherence Scatterometer

    SBC: Spectabit Optics LLC            Topic: AF17AT010

    The US Air Force has noted a need for a tool for broadband (300 nm2m) measurement of optical propagation properties such as absorption and scattering coefficients. A simple and inexpensive generic tool for extracting these properties from samples would be beneficial to many areas of both DoD and general scientific and industrial research. The present proposal seeks to develop a commercial instrume ...

    STTR Phase I 2017 Department of DefenseAir Force
  5. Blended Reality Solution for Live, Virtual, and Constructive Field Training

    SBC: Mike Sutton Consulting, Inc.            Topic: AF17AT011

    The proposed Small Business Technology Transfer (STTR) Phase I project will determine the technical feasibility and cost-effectiveness of utilizing emerging blended-reality technologies that enable interoperability with LVC simulations to create more effective and comprehensive Battlefield Airmen training environments. The proposed training technologies will be integrated across multiple platforms ...

    STTR Phase I 2017 Department of DefenseAir Force
  6. Blended Reality for Live, Virtual, and Constructive Field Training

    SBC: SA Photonics, Inc.            Topic: AF17AT011

    A Battlefield Airman (BA) has one of the most challenging positions in the military. BA personnel are tasked with the dual roles of being warfighters as well as Combat Controllers, Pararescuemen, Tactical Air Control Party (TACP) members and Special Operations Weather Technicians often while behind enemy lines. These complex duties require high fidelity training. In some cases, such as pararesc ...

    STTR Phase I 2017 Department of DefenseAir Force
  7. Reliable Aerothermodynamic Predictions for Hypersonic Flight for High Speed ISR

    SBC: METACOMP TECHNOLOGIES, INC.            Topic: AF17AT014

    The proposed project will develop advanced modeling capabilities for hypersonic flow problems, specifically for predicting aerothermodynamic flow field for estimation of drag, thermal and structural loads, and for surface interactions. A quantum-to-continuum suite of tools that develop molecular relaxation models based on computational chemistry and quasi-classical trajectory (QCT) analysis will b ...

    STTR Phase I 2017 Department of DefenseAir Force
  8. Simultaneous Time-Resolved Gas and Particle Flow Measurements in a Multiphase Blast Using Particle Imaging Velocimetry and Novel Phase Separation Techniques

    SBC: Metrolaser, Inc.            Topic: AF17AT020

    An experimental method is proposed to enable time-resolved measurements of both gas and particle velocities in explosions containing particles for munitions research. The approach involves novel processing methods for two-dimensional images that allow discrimination of the image content based on particle size. This allows an image containing a poly-dispersed distribution of particles to be decompo ...

    STTR Phase I 2017 Department of DefenseAir Force
  9. High speed, multispectral, linear polarization display

    SBC: Polaris Sensor Technologies, Inc.            Topic: AF17AT021

    Several birds and insects use sky features such as sun, moon or star positions, sky polarization and even forest canopy structures to navigate and maintain heading in day or night conditions. To better understand this ability in insects, a sky projector is needed to allow researchers to project realistic sky images to the insect so that insect response can be studied. Polaris proposes to partner ...

    STTR Phase I 2017 Department of DefenseAir Force
  10. Extending Molecular Simulation to Grain Scale for Simulating Response of Energetic Material Under High Strain Rate and Shock Loading

    SBC: CFD Research Corporation            Topic: AF17AT023

    High Velocity Penetrator Weapons experience severe stress in terms of high frequency vibration and shock during launch, flight, and on impact. The extreme conditions have significant impact on the survivability of the weapon due to damage of the energetic material and fuze compartment. Molecular dynamics is often used to understand the effect of external shock on the material. However, molecular ...

    STTR Phase I 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government