You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: N/A

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase I 2014 Department of EnergyARPA-E
  2. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: DEFOA0000941

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase II 2014 Department of EnergyARPA-E
  3. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: DEFOA0000941

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase II 2017 Department of EnergyARPA-E
  4. SAR AI Training dataset generated using Reification

    SBC: Arete Associates            Topic: DTRA21B001

    The Synthetic Aperture Radar (SAR) Image Generation Data Augmentation (SIGDA) system is achieved using SAR simulators and the Arete’s Reification approach. Large, realistic datasets will be generated using the Arete Reification capability. These large Reified datasets are then used to train machine learning or Artificial Intelligence (AI), Automatic Target Recognition (ATR) classification algori ...

    STTR Phase I 2022 Department of DefenseDefense Threat Reduction Agency
  5. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  6. Numerics-Informed Neural Networks (NINNs)

    SBC: KARAGOZIAN & CASE, INC.            Topic: DTRA21B002

    The overall goal is to develop numerics-informed neural networks (NINNs) and DeepOnets for chemical reactions and for PDEs with spatial derivatives improve the computational efficiency of the chemical kinetics models for chemical weapon agents and simulants. Based on the first NINN developed by the Karniadakis’s group in 2018, which blends the multi-step time-stepping with deep neural networks, ...

    STTR Phase I 2022 Department of DefenseDefense Threat Reduction Agency
  7. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  8. Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases

    SBC: CFD RESEARCH CORPORATION            Topic: CBD18A001

    In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens,whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial andalphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable and ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  9. Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases

    SBC: CFD RESEARCH CORPORATION            Topic: CBD18A001

    In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens, whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial and alphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable an ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
  10. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government