You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  6. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  7. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Compact Laser Drivers for Photoconductive Semiconductor Switches

    SBC: ASR Corporation            Topic: DTRA16A004

    A compact laser driver will allow photoconductive semiconductor switches to be used in small EMP simulator "building blocks" (EMPBB). Combined with a battery powered on-board pulsed power system, these EMPBBs will allow the construction of flexible EMP test facilities with nothing more than a single fiber optic timing connection to each EMPBB.

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government