You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Techniques to Adjust Computational Trends Involving Changing Data (TACTIC-D)

    SBC: OASYS, INC.            Topic: N17BT032

    The Navy seeks technology based on statistical or computational methods to assist in the continued tracking of training performance and proficiency trends as underlying tactical data changes. OASYS, INC. and the ITCS at UAH proposes to exploit the benefits of modeling the underlying cause-effect structure of Navy data, rather than the data itself. This approach makes the model and analytical metho ...

    STTR Phase I 2017 Department of DefenseNavy
  2. Risk-Based Unmanned Air System (UAS) Mission Path Planning Capability

    SBC: ACTA, LLC            Topic: N17BT034

    In this Phase I Project ACTA and its partners will demonstrate the feasibility of developing a risk-based mission path planning (RB MPP) approach. Areas of interest to the Navy where a RB MPP address critical needs include enabling less restrictive UAS operations within the US National and Foreign Airspaces. The Phase I will demonstrate feasibility with a two-step approach. The first step will dem ...

    STTR Phase I 2017 Department of DefenseNavy
  3. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    OKSI and Professor Matthew Taylor will develop the Cognitive Adaptation and Mission Optimization (CAMO) command and control tool for teams of UAS platforms. CAMO will incorporate existing databases (e.g., NASA population maps, FAA airspace maps, etc.) as well as real-time data from UAS into a learning-based cognitive control solution that maximizes mission performance while minimizing risk for a t ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Cognitive Risk Management for UAS Missions

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: N17BT035

    Enabling operators to command and control multiple UAVs will require higher levels of supervisory control, enabling vehicles to operate autonomously during larger portions of each mission. For the foreseeable future, however, critical portions of each mission will require operators to apply their superior knowledge, judgment, and skills to assess the situation, monitor execution more closely and, ...

    STTR Phase I 2017 Department of DefenseNavy
  5. Unified In-Space Propulsion Framework for Prediction of Plume-Induced Spacecraft Environments

    SBC: CFD RESEARCH CORPORATION            Topic: T102

    Chemical contamination of spacecraft components as well as thermal and force loading from firing liquid propellant thrusters are critical concerns for in-space propulsion applications. Gas molecular contamination and liquid droplet deposition due to incomplete combustion threaten to damage surface materials, sensitive instruments and optical sensors, and poses major risks for mission success. Liqu ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  6. Soft Robotic Manipulators with Enhanced Perception using Multimodal Sensory Skins

    SBC: OTHER LAB, INC.            Topic: T1101

    We propose that the key to robotic automation in unstructured environments is compliant robotic manipulators that can tolerate, sense, and leverage contact in a feedback loop. We have demonstrated proof of concept of an instrumented end-effector capable of enhanced perception through observed and controlled contact in phase I. We will now expand the project to develop highly capable state and cont ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  7. Modular Embedded Intelligent Sensor Network

    SBC: Angstrom Designs, Inc.            Topic: T1301

    No existing commercial wireless sensor network option meets NASAs current needs for flexibility, size, mass and resilience to extreme environments. The proposed innovation is a MEIS network which combines any number and any type of sensors into a wireless sensor network (WSN), with each of the sensors being motes, or nodes, on the network. The network will be self-healing and self-configuring. Eac ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  8. Active Radiation Shield

    SBC: GLOYER-TAYLOR LABORATORIES INC            Topic: T301

    In the Phase I effort, Gloyer-Taylor Laboratories LLC (GTL) verified the feasibility of generating power from space particle radiation. This effort successfully demonstrated electrical power production from a particle radiation source using an initial proof-of-concept device. The effort also identified a second approach that has the potential for even better power generation and offers enhanced ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  9. Sensitivity Analysis for Design Optimization Integrated Software Tools

    SBC: Linked, Inc.            Topic: T401

    The objective of this Phase 2 proposal is to provide a new set of sensitivity analysis theory and codes, the Sensitivity Analysis for Design Optimization (SADO) software that integrates with the existing NASA O3 Tool. In this Phase II effort, the sensitivity codes developed in Phase I will add functionality to simplify Ground Vibration Test, or model tuning, by calculating a number of error metric ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  10. A Novel, Membrane-Based Bioreactor Design to Enable a Closed-Loop System on Earth and Beyond

    SBC: MANGO MATERIALS INC            Topic: T604

    The proposed innovation is a membrane bioreactor system to produce a biopolymer from methane gas that is applicable in outer space environments. This new methane fermentation process will expand and advance current gas delivery techniques to create affordable fermentation methods on Earth and beyond. Mango Materials is currently working to scale up and commercialize the production of polyhydroxyal ...

    STTR Phase II 2017 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government