You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Wearable Medical Electro-textile System for the Warfighter

    SBC: Triton Systems, Inc.            Topic: DHA17A001

    Triton Systems, Inc., teamed with an academic partner, propose to: a) investigate the intensity and shape of the electromagnetic field (EMF) radiated by the human body, and b) develop a simulation of the resulting field to further explore the use of the human EMF to predict warfighter physiological status.

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Medic-ART: Medics Augmented Reality Trainer

    SBC: Aptima, Inc.            Topic: DHA17A003

    Navy corpsmen have helped achieve a remarkable survival rate for the warfighters, civilians, and enemy combatants whom they serve. But this success masks significant challenges. Training corpsmen is costly; it addresses primarily the acquisition of skills (rather than maintenance); it fails to convey the perceptual and cognitive skills to handle complex combat wounds; the design of training techno ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Wireless Non-Invasive Advanced Control of Microprocessor Prostheses and Orthoses

    SBC: Liberating Technologies, Inc.            Topic: DHA17A005

    There are several current and imminent orthotic and prosthetic (OandP) fitting scenarios that would greatly benefit from the ability to wirelessly collect and transmit physiological information from the user. Both upper- and lower- limb OandP fittings that: 1) use osseointegration, 2) have cable management issues, and 3) could benefit from physiological information from locations proximal to the ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Non-contact Tissue Viability Assessment (NTVA)

    SBC: Vivonics, Inc.            Topic: DHA17A006

    Selecting the level of debridement sufficient to minimize inflammation and determining the optimal treatment in a timely fashion is critical given the risks of infection and sepsis. Grafting success is dependent on the removal of all necrotic tissue and requires the presence of highly-vascularized granulation tissue. The goal of early debridement for grafting is to remove all the devitalized tis ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. VOC sensor for Real-Time Physiological Status Monitoring

    SBC: Triton Systems, Inc.            Topic: DHP16C002

    Supplemental oxygen is needed by aircrews and divers. However, oxygen use is limited by the onset of pulmonary oxygen toxicity (PO2T) which can significantly damage pulmonary tissues leading to decreased performance among other adverse effects. A real time sensor that is sensitive and selective with fast response is needed to monitor warfighter breath for trace VOC (volatile organic compound) spe ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: Bayspec, Inc.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Rodent Audio Signal Processor (RASP)

    SBC: Mide Technology Corporation            Topic: DHP16C003

    Rodents serve as models for the human brain and behavior, and their calls give researchers a window into their mood. Unfortunately, rodent calls are ultrasonic, so a researcher must record a test and then play the audio back at a slower speed to manually categorize and count calls. Software does exist to accomplish this task, but it does not have the ease of use or accuracy that researchers want. ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government