You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
  2. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: A13AT008

    The project will remove a key difficulty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deteriorate over long times due to the treatment of artificial outer boundaries. We propose to develop a universal algorithm and software that will correct this problem by employing the Huygens' principle an ...

    STTR Phase II 2014 Department of DefenseArmy
  3. Chemical Analyzer System for In Situ and Real Time Surface Monitoring for Composition Control During Synthesis of Compound Semiconductor Films

    SBC: Staib Instruments, Inc.            Topic: A13AT011

    The area of thin film growth has progressed rapidly, producing many high performance new materials which require accuracy of their atomic composition to perform as expected. Any method to provide real time in situ information about the elemental composition of the growing surface is highly valuable for these new, complicated materials. Utilizing a new instrument design, the Phase I project team ...

    STTR Phase II 2014 Department of DefenseArmy
  4. Oriented Enzymatic Electrodes with Enhanced Charge Transfer

    SBC: CFD RESEARCH CORPORATION            Topic: A12aT011

    Our objective is to significantly increase the electron transfer efficiency of the enzyme-catalyzed reactions at electrodes and thereby establish a new state-of-the-art power source for military and commercial systems. The approach is to develop a novel method for orienting enzymes immobilized onto the electrode surface that results in facilitated charge transfer. The proposed bio-electrode techn ...

    STTR Phase II 2014 Department of DefenseArmy
  5. Advanced Wavelength Tuners for Chem-Bio Detection Lasers

    SBC: LFK Technology Corp.            Topic: A11aT024

    Several laser types are in development by the government for advanced proximal sensors, including the quantum cascade laser, the miniature solid state laser with optical parametric oscillator and the miniature CO2 gas laser. The enabling critical component for all these advanced transmitters is the compact, robust, rapid, precision wavelength selector. It is proposed to develop and deliver a sta ...

    STTR Phase II 2014 Department of DefenseArmy
  6. Micromachined Probes for Measurement and Characterization of Terahertz Materials and Devices

    SBC: DOMINION MICROPROBES, INC.            Topic: A12aT022

    The objective of this phase II STTR program is twofold: (1) to design, prototype, and commercialize differential on-wafer probes for characterizing devices in the 140220 GHz and 220320 GHz bands, and (2) to engineer the geometry and material of the micromachined probe tip to enable robust, consistent, and low-resistance electrical contact to devices with various contact pad metallizations, includi ...

    STTR Phase II 2014 Department of DefenseArmy
  7. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10aT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the curren ...

    STTR Phase II 2013 Department of DefenseArmy
  8. Ultrafast Physical Random Number Generation Using Chaos

    SBC: Torch Technologies, Inc.            Topic: A14AT002

    Random numbers are essential for a growing number of modern applications. As computer speed and communications bandwidth have increased the potential for practical streaming cipher and large-scale Monte Carlo simulations have become technologically feasible. For these and other applications, ultrafast random number generators are essential. This is intuitively clear. Additionally, however, the ide ...

    STTR Phase II 2016 Department of DefenseArmy
  9. Automated Deployable Robust Training System

    SBC: BARRON ASSOCIATES, INC.            Topic: A15AT012

    Barron Associates, Inc. proposes to develop the Phase II Automated Deployable Robust Training (ADROIT) System, a comprehensive environment to train and deploy vertebrates to detect and mark landmines and unexploded ordnance (UXO) quickly and accurately. The ADROIT system will be designed to be cost-effective, automated, flexible, scalable, modular, and robust, with a focus on training efficiency. ...

    STTR Phase II 2016 Department of DefenseArmy
  10. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government