You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Multiphase Modeling of Solid Rocket Motor Internal Environment

    SBC: CFD Research Corporation            Topic: T1

    Solid rocket motor (SRM) design requires detailed understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and to assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  2. Transient Acoustic Environment Prediction Tool for Launch Vehicles in Motion During Early Lift-Off

    SBC: CFD Research Corporation            Topic: T1

    Launch vehicles experience extreme acoustic loads dominated by rocket plume interactions with ground structures during liftoff, which can produce damaging vibro-acoustic loads on the vehicle and payloads if not properly understood and mitigated against. Existing capabilities for modeling turbulent plume physics are too dissipative to accurately resolve the acoustic propagation and detailed vehicle ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  3. High Performance 3D Photonic Integration for Space Applications

    SBC: Freedom Photonics LLC            Topic: T8

    In this work, Freedom Photonics will team with University of California, Santa Barbara to develop a hybrid integration platform that integrates yielded, best-of-breed active optical components with low-cost, high functionality Silicon Photonics components in a manner that is compatible with foundry fabrication (such as AIM Photonics). This will be performed in a highly manufacturable manner, using ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  4. Demonstration of Autonomous Differential Throttle-based Flight Control for Aircraft with Distributed Electric Propulsion

    SBC: Empirical Systems Aerospace, Inc.            Topic: T15

    A series of RDT&E activities is proposed to create and demonstrate a reconfigurable, autonomous flight controller for the Aircraft for Distributed Electric Propulsion Throttle-based Flight Control (ADEPT-FC) which was designed and built in Phase I, a 33 lb remote controlled aircraft featuring eight overwing electric ducted fans (EDFs) distributed spanwise along the wing’s trailing edge. The prop ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  5. Optical Intersatellite Communications for CubeSat Swarms

    SBC: CROSS TRAC ENGINEERING, INC.            Topic: T11

    .The growing interest in CubeSat swarm and constellation systems by NASA, the Department of Defense and commercial ventures has created a need for self-managed inter-satellite networks capable of handling large amount of data while simultaneously precisely synchronizing time and measuring the distances between the spacecraft. CrossTrac Engineering, Inc., in cooperation with our partners Professor ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  6. Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System

    SBC: AMERICAN GNC CORPORATION            Topic: T13

    To support development at NASA’s Stennis Space Center (SSC) testing facilities and infrastructure for the monitoring of remote or inaccessible measurement locations, American GNC Corporation (AGNC) and Rensselaer Polytechnic Institute (RPI) have developed the Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System. This technology allows deploying flexible instrumentat ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  7. Algorithms for Look-down Infrared Target Exploitation

    SBC: Signature Research, Inc.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  9. Prediction of Plume Induced Rock Fracture for Landers

    SBC: CFD Research Corporation            Topic: T9

    The landing surface damage and liberation of debris particles caused by rocket plume impingement flow during spacecraft propulsive landing on unprepared surfaces of Moon, Mars, and other celestial bodies poses a high risk for robotic and human exploration activities. Simply determining whether the plume induced loads exceed the bedrock bearing capacity threshold is not sufficient. An integrated m ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  10. A Scalable Gas-Particle Flow Simulation Tool for Lander Plume-Surface Interaction and Debris Prediction

    SBC: CFD Research Corporation            Topic: T9

    Spacecraft propulsive landings on unprepared regolith present in extra-terrestrial environments pose a high risk for space exploration missions. Plume/regolith interaction results in (1) the liberation of dust and debris particles that may collide with the landing vehicle and (2) craters whose shape itself can influence vehicle dynamics. To investigate such gas-granular interactions for large-scal ...

    STTR Phase I 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government