You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD Research Corporation            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is critical to detect the proliferation of nuclear material. Critical challenges facing this objective include: (a) high sensitivity detection of signature emissions (e.g., gamma rays) from common radioactive isotopes behind shielding, and (b) cost-effe ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  2. Portable System with Li Foil MWPC Neutron Detectors

    SBC: Radiation Detection Technologies, Inc.            Topic: DTRA14B005

    At the completion of the research and development effort a Li foil multi-wire proportional counter (MWPC) neutron detector with more than 625 cm^2 of active area will be included in a portable radiation detection system. The system is expected to have an intrinsic thermal neutron detection efficiency of 55% or greater and gamma-ray rejection ratio (GRR) of 1.0x10^-8 or better. A gamma-ray spectrom ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  3. Robust Mission and Safety Critical Li-Ion BMS for Aerospace Applications

    SBC: Space Information Laboratories, LLC            Topic: N15AT001

    Space Information Labs (SIL) and South Dakota State University (SDSU) have teamed to provide Navy an innovative, but also producible, approach to a robust mission and safety critical Li-Ion battery man-agement system across Navy platforms to include aircraft, helicopters, UAS, missiles and directed energy weapons. SILs modular and scalable Li-Ion Intelli-Pack battery system will be designed to fro ...

    STTR Phase I 2015 Department of DefenseNavy
  4. Improved Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: N15AT002

    Computational Sciences LLC will collaborate with the Rensselaer Polytechnic Institute (RPI) to develop and validate a stand-alone computational module that naturally accounts for the effects of turbulence. Such fluctuations and transitions may be associated with compressible flows and boundary layer interactions. The module will be designed for implementation in to existing legacy codes for use in ...

    STTR Phase I 2015 Department of DefenseNavy
  5. Grid-Spacing-Independent and Discretization-Order-Independent Simulation for Naval Single-Phase and Two-Phase Flow Applications

    SBC: Kord Technologies, Inc.            Topic: N15AT002

    Turbulent shear flows in naval applications are characterized by vastly different lengths and time scales associated with rotor tip vortices and the vortical structures shed from the ship, and additional phase from water drops and water vapor. To tackle the modeling challenges, we propose a novel methodology that combines a vorticity preserving method and a new approach to LES turbulence modeling ...

    STTR Phase I 2015 Department of DefenseNavy
  6. Innovative Physics-based Modeling Tool for Application to Passive Radio Frequency Identification System on Rotorcraft

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: N15AT005

    We propose development of a software capability which, based on use of MathSysaccurate and efficient exact-physics computational electromagnetics (CEM) solvers, will enable modeling and optimization of the properties of on-platform pRFID tag/reader antenna systems. Passive Radio Frequency Identification devices (pRFID) mounted on complex rotorcrafts pose challenging modeling problems: since pRFID ...

    STTR Phase I 2015 Department of DefenseNavy
  7. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: STOCHASTECH CORPORATION            Topic: N15AT006

    The computation and real-time implementation of controls in nonlinear systems remains one of the great challenges for applying optimal control theory in demanding aerospace and industrial systems. Often, linearization around a set point is the only practical approach, and many controllers implemented in hardware systems are simple linear feedback mechanisms. From proportional guidance in missiles ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: Systems Technology, Inc.            Topic: N15AT006

    Systems Technology, Inc. proposes to use and extend new technology from the University of Florida to enable real-time use of trajectory optimization to improve the guidance of autonomous air vehicles such as those used by the U. S. Navy. These range from missiles to UAVs. Specifically this work will involve enhancements, from the University of Florida, in hp-adaptive pseudospectral optimization. T ...

    STTR Phase I 2015 Department of DefenseNavy
  9. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: Intelligent Optical Systems, Inc.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase I 2015 Department of DefenseNavy
  10. In situ NDI and correction of the AM process with laser SAW and heterodyne detection

    SBC: POLARONYX, INC.            Topic: N15AT008

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to support laser additive manufacturing of metal parts by using fiber laser SAW and heterodyne detection. It is the enabling technology for real time characterize the AM parts in terms of temperature, cooling rate, grain structure, and defects. A proof of concept demonstration will be carried out at the end of Phase 1.Prototypes wi ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government