You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF17AT018

    Additive manufacturing (AM) technologies covering a broad range of technologies and processes have been under continuous and accelerating development since the 80s. While there are still fundamental hurdles such as low production rates and small sizes, AM holds tremendous promise in terms of revolutionizing manufacturing. Recent trends include direct-printing and incorporating sensors and electr ...

    STTR Phase I 2017 Department of DefenseAir Force
  3. Adaptive Artificial Intelligence for Next-Generation Conflict Simulation

    SBC: HPS Simulations            Topic: AF03T022

    Computer wargames and combat simulation software has reached a very high level of comprehensiveness and sophistication in terms of modeling fidelity and accurate results. The recently released simulation titled Point of Attack-2, in particular, affords users a very powerful combat simulation package in a desktop PC environment. At the same time, however, the increased complexity of the system ma ...

    STTR Phase II 2004 Department of DefenseAir Force
  4. Adaptive Broadband Linearization for Analog Photonic Links

    SBC: PHASEBRIDGE, INC.            Topic: ST041003

    An investigation of a broadband analog optical modulator linearization scheme is proposed. The scheme is based on the combination of multiple semiconductor modulator devices, driven from a common electrical input. The linearization is accomplished in the optical domain, making the approach suitable for wideband microwave applications that have frustrated previous attempts at electrical pre-distort ...

    STTR Phase I 2004 Department of DefenseDefense Advanced Research Projects Agency
  5. Adaptive Optics controlled nonlinear propagation of USLP

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: TOYON RESEARCH CORPORATION            Topic: N17AT024

    Ultra-short pulse lasers have advantages over continuous-wave lasers for directed-energy applications due to the high peak powers that can be reached. Directed-energy weapons are profoundly limited by the aberrations caused by atmospheric turbulence and current adaptive optics can correct for these aberrations only when the propagation medium is reciprocal. Unfortunately, nonlinear effects in the ...

    STTR Phase I 2017 Department of DefenseNavy
  7. Adaptive Space-Time Radar Techniques and Waveforms

    SBC: CHIRP CORP.            Topic: N04T007

    Energy-on-target is maximized in optics and ocean acoustics by transmitting a time-reversed (spectral phase conjugated) version of received data at each array element or subarray. This process uses an unknown propagation channel as its own space-time matched filter to implement a RAKE receiver at the target location. (A RAKE receiver passes data through a filter that is matched to the channel im ...

    STTR Phase I 2004 Department of DefenseNavy
  8. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Advanced Computational Algorithms for Simulating Weapon-Target Interaction

    SBC: ACTA, LLC            Topic: ARMY03T03

    This STTR project will develop and validate a robust, scalable computational capability for the simulation of weapon-target interactions of interest to the Army. The proposed algorithm is based on the FLIP (Fluid Implicit Particle) - MPM (Material Point Method) - MFM (Multiphase Flow Method) approach and CartaBlanca nonlinear solver environment developed at Los Alamos National Laboratory. CartaB ...

    STTR Phase II 2004 Department of DefenseArmy
  10. Advanced Computational Algorithms for Simulating Weapon-Target Interaction

    SBC: ACTA, LLC            Topic: N/A

    This STTR project will develop and validate a robust, scalable computational capability for the simulation of weapon-target interactions of interest to the Army. The proposed algorithm is based on the FLIP (Fluid Implicit Particle) - MPM (Material Point Method) - MFM (Multiphase Flow Method) approach and CartaBlanca nonlinear solver environment developed at Los Alamos National Laboratory. CartaB ...

    STTR Phase I 2004 Department of DefenseArmy
US Flag An Official Website of the United States Government