You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Coupled System for Predicting SPE Fluxes

    SBC: PREDICTIVE SCIENCE INCORPORATED            Topic: T602

    Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel. They can also harm aircraft avionics, communication and navigation. We propose to develop a system to aid forecasters in the prediction of such events, and in the identification/lengthening of "all clear" time periods when there is ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  2. Advanced Gas Sensing Technology for Space Suits

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: T601

    The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on infrared absorption are candidate replacements, because of their proven long-term stability, despite their size and power consumption and failures in the presence of liquid water. No current compact sensor has the tolerance for liquid water ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  3. A Novel, Membrane-Based Bioreactor Design to Enable a Closed-Loop System on Earth and Beyond

    SBC: MANGO MATERIALS INC            Topic: T604

    The proposed innovation is a membrane bioreactor system to produce a biopolymer from methane gas. This new methane fermentation process will expand and advance current gas delivery techniques to create affordable fermentation methods on Earth and beyond. Mango Materials is currently working to scale up and commercialize the production of polyhydroxyalkanoate (PHA) from methane, but its scaled-up ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  4. AstroCube: An Asteroid Prospecting CubeSat Mission

    SBC: BUSEK CO., INC.            Topic: T402

    Busek, in partnership with Arizona State University (ASU), proposes to develop a robotic resource prospecting mission to a near-Earth asteroid using a 6U CubeSat, nicknamed "AstroCube". This ambitious mission is enabled by Busek's iodine-fueled BIT-3 RF ion propulsion system that can deliver ~1mN of thrust and ~2200sec of total Isp with 65W nominal input power. With 1.6kg of solid iodine propell ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  5. Bi-Metallic Additive Manufacturing Close-Out of Coolant Channels for Large Liquid Rocket Engine (LRE) Nozzles

    SBC: Keystone Synergistic Enterprises, LLC            Topic: T1204

    This NASA sponsored STTR project will investigate methods for close-out of large, liquid rocket engine nozzle, coolant channels utilizing robotic laser and pulsed-arc additive manufacturing methods. Copper to Nickel alloy interface strength will be quantified and metallurgical characterization completed. A thermal model based on Rosenthal?s analytical expression for a moving heat source, which has ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  6. Compact Laser for In-Situ Compositional Analysis

    SBC: Q-PEAK INCORPORATED            Topic: T801

    In response to NASA?s solicitation for light-weight and power efficient instruments that enable in situ compositional analysis, Q-Peak in partnership with the University of Hawaii proposes to develop a compact, robust, and efficient instrument to combine all laser based spectroscopies capable of performing imaging, Raman, Laser Induced Breakdown, Laser Induced Fluorescence and LIDAR The main adva ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  7. Data Driven Intent Recognition Framework

    SBC: OTHER LAB, INC.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
  8. Development of an Advanced Diamond TEC Cathode

    SBC: IOP Technologies LLC            Topic: T603

    NASA recognizes the importance of conservation, smart utilization and reuse of resources for their deep space missions to address the need for regeneration of air, water and waste with highly reliable systems to reduce mission payload. Additionally, energy for life support and other systems needs to be obtained from renewable energy sources or waste streams. In order to address NASA's requirements ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  9. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government