You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Base Metal Electrode Capacitor Test Methods

    SBC: FUNDO SCIENCE CORPORATION            Topic: MDA14T003

    Miniaturized base metal electrodes (BME) multilayer ceramic capacitors (MLCC) are of great interest for future missile applications as designers are striving to achieve smaller, lighter, cheaper, faster and better electronic assemblies without sacrificing long-term performance. Unfortunately, screening, reliability and qualifications criteria are either not available or not standardized. In the ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  2. Real-Time Health Management Portable Sensor for Solid Rocket Motors

    SBC: PHYSICAL SCIENCES INC.            Topic: MDA14T004

    Physical Sciences Inc. (PSI) proposes to design, develop, and demonstrate a portable, non-invasive, real-time sensor to assess the chemical and physical health of solid rocket motors (SRMs) as a function of age without affecting the motors integrity. In Phase I, a sensor to monitor specific gas species that are markers of the chemical and mechanical aging processes of composite and double base pr ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  3. Failure Avoidance in Microelectronics through Coefficient of Thermal Expansion (CTE) Mismatch Modeling and Design

    SBC: Space Micro Inc.            Topic: MDA14T002

    Space Micro will develop the core of the decision support system, assemble the models and material properties and demonstrate the utility of the program in materials selection on a subset of failures related to a specific test-bed, which will be the attachment of quad-flat no-leads (QFN) and ball grid array (BGA) devices to printed wiring boards using different solders, underfills, QFN or BGA geom ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  4. Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: MDA13T001

    In our Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF) project, we will model the entire multi-sensor fusion process as a probabilistic model and reason about the different design and algorithmic decisions that can be made by system engineers. This fusion model will use standard fusion system representations and ideas from statistical relational learning field to create flexibl ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  5. Uncertainty Characterization Using Copulas (UC)2

    SBC: BOSTON FUSION CORP            Topic: MDA13T001

    Boston Fusion, together with our teammate Syracuse University, propose a program of research and development, Uncertainty Characterization Using Copulas (UC)2, that will result in a parametric framework based on the statistical theory of copulas for modeling uncertainties for the problem of object classification. (UC)2 will produce a mathematical framework, founded on rigorous theoretical analysis ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  6. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  7. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: Ocean Bay Information and Systems Management, LLC            Topic: DLA15C001

    "Micro-calorimetry is a Nondestructive Test (NDT) capable of detecting heat characteristics that could identify improperly processed, counterfeit, substandard, nonconforming or fake raw material prior to materials introduction into end-product production cycles. Current calorimetric technology is an extremely sensitive, expensive and time consuming process, utilizing an adiabatic or semi-adiabat ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  8. Using Magnetic Levitation for Non-Destructive Detection of Defective and Counterfeit Materiel

    SBC: Nano Terra, Inc.            Topic: DLA15C001

    The introduction of substandard or counterfeit materials into the DoD supply chain can have extremely expensive, and potentially life threatening, consequences. Current techniques used to detect nonconforming materiel can be destructive (e.g., manual sectioning and inspection of a part), time consuming and expensive (e.g., micro-computed tomography, ultrasound), or provide only limited informatio ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  9. Interactive Sensor Fusion for Context-Aware Discrimination

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: MDA15T001

    We propose a novel computational framework for discrimination that incorporates sensor data from observations of the engagement and from kill assessment (KA) that such sensors can provide. The KA information is combined with data from other sensors to improve the discrimination decision and to reduce the probability of correlated shots. Approved for Public Release 16-MDA-8620 (1 April 16)

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
  10. Deep Inference and Fusion Framework Utilizing Supporting Evidence (DIFFUSE)

    SBC: BOSTON FUSION CORP            Topic: MDA15T001

    Combining information from disparate sensors can lead to better situational awareness and improved inference performance; unfortunately, traditional multi-sensor fusion cannot capture complex dependencies among different objects in a scene, nor can it exploit context to further boost performance. Integrating context information within a fusion architecture to reason cohesively about scenes of inte ...

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government