You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel, Low-Cost Phased arrays Manufactured by 3D Printing (1000-325)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N14AT021

    SI2 Technologies, Inc. (SI2) proposes to accelerate development of printed, high-efficiency phased arrays operating at Navy-relevant frequencies. The proposed development effort will include optimization of the array printing techniques from Phase I to meet the Navys phased array performance goals. The printed arrays will incorporate both printed radiating elements and an innovative printed packag ...

    STTR Phase II 2016 Department of DefenseNavy
  2. Software developments for large-eddy simulations on GPU-accelerated systems

    SBC: CASCADE TECHNOLOGIES INC            Topic: N14AT005

    The objectives of the proposed work are twofold. The first goal is to develop and validate GPU-based static and moving versions of Cascade's large eddy simulation (LES) software CharLES that would fully leverage existing (and future) GPU-accelerated systems accessible by NAVAIR and other DoD agencies. These software developments will be performed by Cascade. For the current project, the targeted c ...

    STTR Phase II 2021 Department of DefenseNavy
  3. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Our proposed sensor will use an innovative hybrid and complimentary discrimination approach to incorporate material identification along with capability of size, size distributions, and concentration while maintaining the same form factor of the curre ...

    STTR Phase II 2021 Department of DefenseNavy
  4. Analysis and Modeling of Erosion in Gas-Turbine Grade Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N19BT033

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent degradation under erosion and post erosion. Our team will develop and demonstrate a physics-based model for erosion/post erosion of CMC’s at room and elevated temperatures (RT/ET). The ICME (Integrated Computational Material Engineering) Physics based Multi Scale Mo ...

    STTR Phase II 2021 Department of DefenseNavy
  5. A Unified System-of-Systems Design and Analysis Toolset for Aircraft Thermal Management Systems

    SBC: PC KRAUSE & ASSOCIATES INC            Topic: N19BT025

    Modern and next generation military aircraft face increasing challenges as thermal demands grow while available heat sinks reduce. Legacy platforms upgraded with advanced electrical systems are also encountering similar thermal constraints. Modeling and simulation (M&S) tools provide a cost-effective solution to the design, analysis, and optimization of growing thermal management challenges, but t ...

    STTR Phase II 2021 Department of DefenseNavy
  6. Ruggedized Multifunction Fiber-Optic Transceiver Optical Subassembly

    SBC: ULTRA COMMUNICATIONS, INC.            Topic: N05T005

    This program adds built-in-test (BIT) functionality within multi-Gbps multimode fiber optic transceivers. The end goal is to develop transceivers capable of detecting and isolating fiber faults along the cable plant in a military environment. This Phase II effort will investigate a solution that integrates the BIT functionality into the transceiver IC so that the overall optical subassembly and ...

    STTR Phase II 2006 Department of DefenseNavy
  7. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  8. Adaptive Space-Time Radar Techniques and Waveforms

    SBC: CHIRP CORP.            Topic: N04T007

    The problem is to improve airborne maritime radar detection of small moving targets in clutter, where the clutter varies with time, range, azimuth, sea state, grazing angle, wind speed, and the look direction of the radar relative to the wind direction. A new version of space-time adaptive processing (STAP) is applied to the problem. The new technique provides improved covariance estimation for ...

    STTR Phase II 2006 Department of DefenseNavy
  9. NAVAL INTEGRATED FIRE CONTROL COUNTER AIR (NIFC-CA)

    SBC: APTIMA INC            Topic: N09T007

    The Navy faces a significant challenge to its dominance of sea and air given the Anti-Access Area-Denial (A2AD) capabilities of major powers. The Navy's response, in part, is to implement technical capabilities that enable platforms to coordinate in new ways to execute offensive and defensive actions at very long range. While the Navy finalizes this Naval Integrated Fire Control-Counter Air (NIFC- ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government