You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: IBC Materials & Technologies, LLC            Topic: N16AT005

    In this proposed SBIR program, IBC Materials & Technologies, in conjunction with our industry partner Mechanical Solutions, Inc. (MSI) and Texas A&M University, will leverage our knowledge and experience in the domain of industrial metallic coatings to develop a metallurgical coating solution for the Air Foil Bearing. IBC has deep expertise in a variety of industrial coating processes including mu ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Ambient Quantum Processor compatible with an All-photonic Repeater Architecture

    SBC: CATALYTE, LLC            Topic: N20AT005

    The significance of the problem is to deploy combined quantum communication-and-processing near to Navy applications.   Our approach, when successful, would enable small, ambient operating QPUs to be connected at a distance by quantum-secure communication.  Unlike bulky optical components and in-contrast to cryogenic qubits, our system, using in situ generated photons, offers a practical s ...

    STTR Phase I 2020 Department of DefenseNavy
  3. A Wavelength-Scalable Dual-Stage Photonic Integrated Circuit Spectrometer

    SBC: Physical Sciences Inc.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase II 2020 Department of DefenseNavy
  4. Computational Methods for Dynamic Scene Reconstruction

    SBC: Systems & Technology Research LLC            Topic: N16AT017

    The ubiquity of high-resolution imagery and video taken by surveillance cameras, handheld cameras, vehicle-mounted cameras, and airborne cameras is creating a rich source of dynamic data that offers opportunities for effectively solving defense, security and law enforcement problems. But in order to develop effective scene and activity understanding applications we must develop robust, accurate an ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Cyber Adversary Discovery Engine (CADE)

    SBC: Charles River Analytics, Inc.            Topic: N19AT021

    Cyber warfare is a rapidly expanding, critical battlefield for the US Navy. Attacks on infrastructure, ship systems, and sailors themselves can significantly reduce operational readiness and deployment time, and can be very costly. To prepare and successfully defend this rapidly evolving battlefield, defensive cyberspace operations (DCOs) must analyze and forensically investigate attacks, but few ...

    STTR Phase II 2020 Department of DefenseNavy
  6. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: SOFAR Acoustics, LLC            Topic: N16AT018

    This effort is focused on establishing an important capability of providing a comprehensive, advanced model of the three-dimensional acoustic field, including propagation, scattering, and reverberation in complex and dynamic environments. This new 3D acoustic model would feed the Navys sonar performance estimation tool with a purpose of addressing the optimal placement of sensors in complicated en ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Decision Support for Operators of Fully Autonomous Systems using RESTORE: Robust Execution System for Trusted Operation in Relevant Environments

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N18BT032

    SSCI and MIT (Prof. Julie Shah) propose to develop and test a system that provides real-time assurance and trust in decisions made by autonomous collaborating vehicles. The proposed system is referred to as the RESTORE (Robust Execution System for Trusted Operation in Relevant Environments) and represents a decision support tool which facilitates decision making by the operator in cases when decis ...

    STTR Phase II 2020 Department of DefenseNavy
  8. Detection Rate Improvements Through Understanding and Modeling Ocean Variability

    SBC: Ocean Acoustical Services and Instrumentation Systems, Inc.            Topic: N18AT002

    The littoral environment is especially demanding on tactical sonar systems, in large part because the spatial and temporal variability imposes sonar system operating conditions of a nature and with a scale heretofore not encountered in the open oceans. Recent Office of Naval Research (ONR) sponsored basic research as well as fleet exercises have shown that littoral environments tactically importan ...

    STTR Phase II 2020 Department of DefenseNavy
  9. Electromagnetic Interference (EMI) Resilient, Low Noise Figure, Wide Dynamic Range of Radio Frequency to Photonic (RF Photonic) Link

    SBC: APPLIED NANOFEMTO TECHNOLOGIES LLC            Topic: N20AT012

    EMI resilient RF Photonic Links are critical for connecting remote antennas in the next generation Navy electronics warfare (EW) architecture. Current commercially available RF/photonic link technologies have deficiencies in dynamic range, noise figure, and SWaP performance. For a solution, this STTR project aims to develop a novel wide dynamic range, low noise RF photonic link, where the key comp ...

    STTR Phase I 2020 Department of DefenseNavy
  10. Electromagnetic Interference Resilient, Low Noise Figure, Wide Dynamic Range RF Photonic Link

    SBC: Photonic Systems, Inc.            Topic: N20AT012

    Photonic Systems, Inc. (PSI) and Harvard University propose to collaborate in Phases I and II of this STTR program towards the goal of demonstrating a broadband RF/photonic signal link with a specific combination of performance parameters and other features not available from present state-of-the-art links. The solicitation’s goal – specifically, an electromagnetic attack-resilient electro-op ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government