You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Nanostructured conductive transparent coatings

    SBC: TRITON SYSTEMS, INC.            Topic: A15AT016

    Triton Systems, Inc. and its academic partner are proposing to fabricate an innovative highly conductive and transmissive thin layer to replace ITO on large area, lightweight solar cells. Part of the proposed approach will be to texture the surface of the coating to improve light transmission into the solar cell. Triton will work with a manufacturer of flexible solar panels for the Army, who wil ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: EOS Photonics            Topic: A14AT015

    To achieve the goals of this program improving spectral coverage and output power of monolithic QCL sources - we propose to develop in collaboration with MIT Lincoln Laboratory a broadly tunable high power source that is based on Eos proprietary QCL array technology. The current generation of Eos commercially available fully packaged QCLAs (The Matchbox) can be tuned over a wavelength range of u ...

    STTR Phase II 2016 Department of DefenseArmy
  4. Using Magnetic Levitation for Non-Destructive Detection of Defective and Counterfeit Materiel

    SBC: Nano Terra, Inc.            Topic: DLA15C001

    The introduction of substandard or counterfeit materials into the DoD supply chain can have extremely expensive, and potentially life threatening, consequences. Current techniques used to detect nonconforming materiel can be destructive (e.g., manual sectioning and inspection of a part), time consuming and expensive (e.g., micro-computed tomography, ultrasound), or provide only limited informatio ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  5. Green Diode Lasers (480-550 nm Spectral Regime)

    SBC: EPITAXIAL LABORATORY INC            Topic: A16AT003

    Despite their broad applications, up to date, diode pumped solid state green lasers are almost exclusively dominate the market due to the lack of low defect or defect-free semiconductor materials with high efficiency at green wavelength (480-550nm). We propose to develop compact, high efficiency, and high brightness III-nitride based green lasers. In phase I, we will focus on design, epitaxial gro ...

    STTR Phase I 2016 Department of DefenseArmy
  6. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
  7. Paper test cards for detection of illicit narcotic and cannabinioid drugs

    SBC: VURONYX TECHNOLOGIES LLC            Topic: A16AT008

    Vuronyx Technologies and Prof. Marya Lieberman at the University of Notre Dame will develop paper analytical devices (idPADs) to presumptively identify illicit drugs. All the reagents needed to perform twelve different chemical color tests are stored on the idPAD. The user rubs the powder to be tested across the PAD, then dips the PAD in water to activate the tests. Within five minutes, a color ...

    STTR Phase I 2016 Department of DefenseArmy
  8. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  9. Technologies to Target Circadian Rhythm Disruption in PTSD

    SBC: BIOSENSICS LLC            Topic: A16AT014

    Circadian rhythm disruption misalignment causes fatigue and a variety of physical and mental ailments, and is a clinical feature of posttraumatic stress disorder (PTSD); it is also closely linked to the severity of PTSD. BioSensics, in collaboration with the Division of Sleep and Circadian Disorders at Brigham and Womens Hospital, will develop a circadian rhythm and sleep coach, Rhythm Sleep, to m ...

    STTR Phase I 2016 Department of DefenseArmy
  10. Manufacturing of Flame Resistant (FR) Combat Printed Nonwoven Material

    SBC: Nano Terra, Inc.            Topic: A16AT015

    Even though nonwovens offer significant cost savings over woven fabrics, nonwovens are mostly used for disposable protective clothing, wipes, filters, and geotextiles. The low adoption rate of nonwovens in reusable garments is due to the difficulty in producing fabrics with a combination of desired properties that mimic woven fabrics. For example, a nonwoven with the drapability and air permeabili ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government