You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel, Low-Cost Phased arrays Manufactured by 3D Printing (1000-325)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N14AT021

    SI2 Technologies, Inc. (SI2) proposes to accelerate development of printed, high-efficiency phased arrays operating at Navy-relevant frequencies. The proposed development effort will include optimization of the array printing techniques from Phase I to meet the Navys phased array performance goals. The printed arrays will incorporate both printed radiating elements and an innovative printed packag ...

    STTR Phase II 2016 Department of DefenseNavy
  2. Durable Sol-Gel Surface Treatment to Control Cathodic Current Density

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N14AT014

    There are numerous regions across modern aircraft that necessitate advanced corrosion solutions in order to protect and maintain their readiness. One such application is the numerous cathodic fasteners that are galvanically coupled to anodic structural materials, like high-strength aluminum alloys. There is a need to bolster corrosion protection at these locations via a user-friendly surface treat ...

    STTR Phase II 2016 Department of DefenseNavy
  3. Context-driven Active-sensing for Repair Tasks II (CART II)

    SBC: DYNAMIC OBJECT LANGUAGE LABS INC.            Topic: ST14B003

    Existing machine perception systems are too inflexible, and are not robust enough to environmental uncertainty. In existing systems, perception components are statically (and manually) configured to process sensor data. The parameters of components in such a system are also statically tuned to operate optimally under very specific conditions. Information flow in such systems is bottom up, and gene ...

    STTR Phase II 2016 Department of DefenseDefense Advanced Research Projects Agency
  4. Cybersecurity within Virtualized Environments

    SBC: PROGENY SYSTEMS, LLC            Topic: N98115

    Tactical networks have increasing needs for greater cybersecurity and greater flexibility and resilience. By combining the advances made in the field of virtualization in terms of Type-1 (Bare Metal) Virtualization, and Introspection via the Hypervisor, a

    STTR Phase II 2016 Department of DefenseNavy
  5. Durable Hydrophobic Nanocomposite Insulating Coating for High Voltage VLF/LF Antenna Components

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N14AT025

    The Fixed Submarine Broadcasting System (FSBS) is a low frequency (LF) and very low frequency (VLF) communication system that provides independent and survivable connectivity to the United States Navy nuclear submarine force. The system includes six outdoor transmission antennas that operate at high power and generate extremely high electric fields in a wide variety of environmental conditions. Th ...

    STTR Phase II 2016 Department of DefenseNavy
  6. ROBUST MOVING TARGET HANDOFF IN GPS-DENIED ENVIRONMENTS

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: AF15AT34

    Unmanned aircraft systems (UAS) are increasingly seen as a cornerstone in developing the future Defense infrastructure and it is critical that they collaborate efficiently and execute complex missions in denied environments. Although great progress has been made in GPS-denied navigation, the target handoff problem in GPS-denied environments has not been extensively studied. In this problem, a trac ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. Nonlinear-DSP-Enabled RF-Photonic Link

    SBC: RAM PHOTONICS LLC            Topic: N14AT023

    Digital equalizers have been the major enablers in RF communications in terms of managing component imperfections and channel impairments. Specifically, the ever increasing processing power of the dedicating computing processors has availed a steady increase in the ability of complex communication systems to deal with impairments as well as allowing higher capacities in the information transfer.On ...

    STTR Phase II 2016 Department of DefenseNavy
  8. Spectrum Sensing and Sharing by Cognitive Radios in Position, Navigation and Timing (PNT) Systems

    SBC: Echo Ridge, LLC            Topic: AF15AT23

    Echo Ridge proposes to prototype and demonstrate an architecture and key algorithms to support spectrum sharing for Position, Navigation, and Timing (PNT) that focuses on spectrally congested and high likelihood operational scenarios. Four key results are proposed to be delivered: 1) end-to-end Hardware-in-the-Loop (HiTL) lab demonstration of all segments of the solution in Air Force-relevant oper ...

    STTR Phase II 2016 Department of DefenseAir Force
  9. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Broad Spectrum Optical Property Characterization

    SBC: SPECTRAL MOLECULAR IMAGING, INC.            Topic: AF15AT12

    Liquid Crystal Arrayed Microcavities (LCAM) are a new hyperspectral technology initiated by collaboration among Spectral Molecular Imaging, Advanced Microcavity Sensors and Montana State University Spectrum Laboratory.At the core of this revolutionary technology lie picoliter volume optical cavities that exploit liquid crystal birefringence for tuning an effective cavity length.During a Phase I on ...

    STTR Phase II 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government