You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Versatile and Robust Three-Dimensional Software for Multi-Fluid Plasma Modeling

    SBC: TECH-X CORPORATION            Topic: AF11BT08

    ABSTRACT: In this STTR Tech-X corporation in partnership with the University of Washington will improve a commercial plasma modeling tool, Nautilus, for simulating high-temperature multi-fluid plasmas for problems such as the field reversed configuration, dense plasma focus and the plasma opening switch. Semi-implicit algorithms will be implemented in Nautilus so that the speed of light and elec ...

    STTR Phase II 2014 Department of DefenseAir Force
  2. Vacuum Integrated System for Ion Trapping

    SBC: Coldquanta, Inc.            Topic: A15AT009

    We propose to develop a compact, integrated ion trap quantum system for quantum sensor, timekeeping, and processing applications. To do so, we leverage ColdQuantas expertise in miniature ultra-high vacuum (UHV) and atom chip technology and Duke Universitys expertise in microfabricated surface ion traps and quantum information processing experiments. We will produce designs and implementation pla ...

    STTR Phase I 2015 Department of DefenseArmy
  3. Ultra-Wideband, Low-Power Compound Semiconductor Electro-optic Modulator

    SBC: Freedom Photonics LLC            Topic: N13AT005

    Freedom Photonics is proposing to develop a novel modulator concept. The overall objective of this program is to develop a novel compound-semiconductor electro-optic modulator that simultaneously exhibits 100-GHz operation, optical/microwave velocity matc

    STTR Phase II 2015 Department of DefenseNavy
  4. Ultra-stable, Portable Fabry-Perot Cavities

    SBC: Boulder Precision Electro-optics            Topic: SB12A001

    Frequency stabilized lasers are essential subsystems in many applications. Most importantly, they are used as flywheel oscillators in optical atomic clocks, as well as in many sensing and measurement systems, and some examples are down oil well sensing, l

    STTR Phase II 2015 Department of DefenseDefense Advanced Research Projects Agency
  5. Ultrafast Physical Random Number Generation Using Chaos

    SBC: Torch Technologies, Inc.            Topic: A14AT002

    Ultrafast true random number generators are ideal for data encryption, Monte Carlo testing, and other data transport applications. Torch"s team has extensive experience designing, building, and testing oscillators based on the innovative, hybrid, exactly-solvable, chaotic oscillator theory as developed by Corron, Blakely and Pethel. These oscillators are capable of generating provably-chaotic wa ...

    STTR Phase I 2014 Department of DefenseArmy
  6. Ultra-Coherent Semiconductor Laser Technology

    SBC: TELARIS INC            Topic: A14AT005

    Spontaneous emission is a quantum mechanical process that represents the main source of phase noise in state-of-the-art semiconductor lasers, limiting their coherence, and their suitability for high-speed communication and sensing applications. This proposal aims to develop ultra-high coherence semiconductor lasers on the Silicon/III-V platform with a quantum linewidth of

    STTR Phase I 2014 Department of DefenseArmy
  7. Ultra-Coherent Semiconductor Laser Technology

    SBC: TELARIS INC            Topic: A14AT005

    Spontaneous emission is a quantum mechanical process that represents the main source of phase noise in state-of-the-art semiconductor lasers, limiting their coherence, and their suitability for high-speed communication and sensing applications. This proposal aims to develop ultra-high coherence semiconductor lasers on the Silicon/III-V platform with a quantum linewidth of

    STTR Phase II 2015 Department of DefenseArmy
  8. Transition to the Next Generation High Power Phased Array Transceivers

    SBC: G. A. Tyler Associates, Inc.            Topic: AF12BT13

    ABSTRACT: Given the results obtained in the Phase I effort, we are now in a position to advance to the next generation of High Power Phased Array Transceiver Systems. The new approach proposed here is to use enough elements in the phased array to ensure that significant wavefront compensation performance can be obtained with only piston commands. A system of this nature can be developed in two ...

    STTR Phase II 2014 Department of DefenseAir Force
  9. Tool for Blade Stress Estimation during Multiple Simultaneous Vibratory Mode Responses

    SBC: Nextgen Aeronautics, Inc.            Topic: AF11BT22

    ABSTRACT: NextGen Aeronautics, leveraging past experience in generating stress spectra from static and vibratory loads as well as knowledge of gas turbines, is proposing a method for estimating blade stresses from multiple vibratory loads in rotating systems from limited manufacturer data from Campbell diagrams and strain gage blade stresses. The method hinges on utilizing 3D parametric generic i ...

    STTR Phase II 2014 Department of DefenseAir Force
  10. Terahertz Nano-Radio Platform with Integrated Antenna and Power source

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for nano-scaled ultra-low-power low-cost radios to address field-deployable and massively producible sensing and communication networks in future military and commercial applications. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by exploiting the holistic integration of THz radio transceiver system, on-chip antenna ...

    STTR Phase I 2015 Department of DefenseArmy
US Flag An Official Website of the United States Government