You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Adaptive Visualization of Social Networks (ADVIS)

    SBC: Perceptronics Solutions, Inc.            Topic: ST12A004

    This proposal is to extend into Phase II our development of a new system for Adaptive Visualization of Social Networks (ADVIS). Recent years have seen a dramatic increase in the collection and study of social network data. Numerous social network visualizations have been developed to support user exploration and understanding of these data. However even in the few best systems, cognitive and de ...

    STTR Phase II 2014 Department of DefenseDefense Advanced Research Projects Agency
  2. Advanced Wavelength Tuners for Chem-Bio Detection Lasers

    SBC: LFK Technology Corp.            Topic: A11aT024

    Several laser types are in development by the government for advanced proximal sensors, including the quantum cascade laser, the miniature solid state laser with optical parametric oscillator and the miniature CO2 gas laser. The enabling critical component for all these advanced transmitters is the compact, robust, rapid, precision wavelength selector. It is proposed to develop and deliver a sta ...

    STTR Phase II 2014 Department of DefenseArmy
  3. A General-Purpose Software Tool for Multi-disciplinary Simulation Data Management and Learning

    SBC: CFD Research Corporation            Topic: AF11BT27

    ABSTRACT: The overall goal of the proposed effort is to develop and demonstrate a general-purpose, fast, and reliable management and learning software tool for analyzing massive data sets generated by dynamic multi-disciplinary simulation. In Phase I, key technology elements were developed and proof-of-principle was successfully demonstrated. Data management software encapsulating salient feature ...

    STTR Phase II 2014 Department of DefenseAir Force
  4. An Ultra-Compact Low-Power THz Radio SoC with On-Chip Antenna and Energy Harvesting

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for ultra-low-power, ultra-compact and low-cost radios to address emerging sensing and communication needs for military and commercial applications such as IoT/IoE. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by integration of a nano-scaled THz transceiver, on-chip antenna, and energy harvesting circuits in a form ...

    STTR Phase II 2016 Department of DefenseArmy
  5. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: A13AT008

    The project will remove a key difficulty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deteriorate over long times due to the treatment of artificial outer boundaries. We propose to develop a universal algorithm and software that will correct this problem by employing the Huygens' principle an ...

    STTR Phase II 2014 Department of DefenseArmy
  6. Automated Approaches to Cellular Engineering and Biomanufacturing

    SBC: Covitect Inc.            Topic: ST12B003

    Genome-scale predictable cellular design and engineering of biomanufacturing systems is the overarching goal of DARPAs Living Foundries and 1000 Molecules programs and, if realized, will enable rapid engineering of living systems for a broad range of applications in biotechnology and pharmacology. However, constructing living cells with designed genome is an arduous task that is severely limited ...

    STTR Phase II 2014 Department of DefenseDefense Advanced Research Projects Agency
  7. Biologically-inspired Integrated Vision System

    SBC: Spectral Imaging Laboratory            Topic: AF12BT03

    ABSTRACT: The U.S. Air Force has a need to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are to be deployed on high altitude drones to enhance their intelligence, surveillance, and reconnaissance (ISR) capabilities. Smaller versions o ...

    STTR Phase II 2014 Department of DefenseAir Force
  8. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  9. Broad Spectrum Optical Property Characterization

    SBC: SPECTRAL MOLECULAR IMAGING, INC.            Topic: AF15AT12

    Liquid Crystal Arrayed Microcavities (LCAM) are a new hyperspectral technology initiated by collaboration among Spectral Molecular Imaging, Advanced Microcavity Sensors and Montana State University Spectrum Laboratory.At the core of this revolutionary technology lie picoliter volume optical cavities that exploit liquid crystal birefringence for tuning an effective cavity length.During a Phase I on ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. Comprehensive Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    Using its Phase I program results, M4 Engineering, Inc. and Sandia National Laboratories will continue to create a unique bonded joint analysis methodology and associated software. Surrogate traction-separation models will be created that efficiently capture the behavior that occurs for real bonded joints. Mixed mode loading, including compressive normal tractions and relative displacements will b ...

    STTR Phase II 2014 Department of DefenseNavy
US Flag An Official Website of the United States Government