You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is critical to detect the proliferation of nuclear material. Critical challenges facing this objective include: (a) high sensitivity detection of signature emissions (e.g., gamma rays) from common radioactive isotopes behind shielding, and (b) cost-effe ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  2. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  3. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  4. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  5. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Compact Laser Drivers for Photoconductive Semicond

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government