You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Electronic Warfare: EMS Monitor & Broadcast Training Capacity Enhancement

    SBC: Echo Ridge, LLC            Topic: AF14AT28

    ABSTRACT: Echo Ridge proposes to develop and deliver a suite of prototype EW training tools to support realistic warfighter training in the congested and contested RF environments expected in future operational engagements. The tools consist of an opposing force broadcast capability and an Electromagnetic Spectrum (EMS) monitoring capability which supports both electronic sensing (ES) and electron ...

    STTR Phase II 2016 Department of DefenseAir Force
  2. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: Oceanit Laboratories, Inc.            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  3. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    Systems that operate in constrained environments depend on the acoustics in several ways. Harbor defense systems detect intruders (people and/or vessels) by either listening for their noises (passively) or by pinging on them and detecting their echoes (actively). Furthermore, such systems may also form the equivalent of an underwater cell phone network using sound to carry the information. The aco ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Smart Femtosecond Fiber Laser Wound Healing System

    SBC: POLARONYX, INC.            Topic: DHP15B002

    Based on our success in developing the world first commercial high energy femtosecond fiber laser system and our leading proprietary technology development in ultrashort pulsed fiber laser material processing, PolarOnyx proposes, for the first time, a compact high energy fiber laser based smart wound healing tool to meet with the requirement of this DHP solicitation. It includes a high energy fs f ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Deep Inference and Fusion Framework Utilizing Supporting Evidence (DIFFUSE)

    SBC: Boston Fusion Corp.            Topic: MDA15T001

    Combining information from disparate sensors can lead to better situational awareness and improved inference performance; unfortunately, traditional multi-sensor fusion cannot capture complex dependencies among different objects in a scene, nor can it exploit context to further boost performance. Integrating context information within a fusion architecture to reason cohesively about scenes of inte ...

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
  6. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: Eureka Aerospace            Topic: A14AT004

    This proposal addresses the problem of PCSS/laser trigger integration using a single monolithic laser diode array, thus simplifying the entire optical delivery network necessary for efficient operation of PCSSs. The proposal constitutes a logical continuation of Phase I effort where the main focus was on the detailed design of the PCSS/laser diode array (LDA) integrated architecture. In Phase II ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: EOS Photonics            Topic: A14AT015

    To achieve the goals of this program improving spectral coverage and output power of monolithic QCL sources - we propose to develop in collaboration with MIT Lincoln Laboratory a broadly tunable high power source that is based on Eos proprietary QCL array technology. The current generation of Eos commercially available fully packaged QCLAs (The Matchbox) can be tuned over a wavelength range of u ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Development of a Forensic Swab for High Efficiency Capture and Release of DNA

    SBC: Luna Innovations Incorporated            Topic: A15AT011

    Swabs are routinely used by crime scene investigators and forensic scientists for the collection of a wide range of biological evidence for analysis. Sterile cotton swabs are popular with forensic investigators due to their proficiency in adsorbing cellular material, however they are known for their low efficiency of sample (DNA) release. To better meet the needs of forensic investigators, Luna I ...

    STTR Phase II 2016 Department of DefenseArmy
  9. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT004

    TDA has teamed up with Lawrence Livermore National Laboratory as its research institution collaborator to address the target STTR topic objective of quantifying the uncertainties in the mechanical behavior of the AM parts. To quantify uncertainties by minimizing both the computational burden and expensive testing and also overcoming the IP concerns, we propose a novel approach with three layered i ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Perovskite Solar Cells

    SBC: Radiation Monitoring Devices, Inc.            Topic: N16AT006

    The goal of the proposed research is to develop light-weight, flexible, high efficiency solar cells made from perovskite halide light-harvesting materials for use on unmanned aircraft systems (UAS), for use in conjunction with an energy storage system. Solar cells have historically been heavy, costly, and inflexible. In this research, low-cost manufacturing methods will be used to make high effici ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government