You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Compact robust testbed for cold-atom clock and sensor applications

    SBC: Coldquanta, Inc.            Topic: N13AT018

    Our goal in this Phase II effort is to construct and test a compact, robust testbed for generating laser-cooled strontium atoms on a mobile platform. The focus of the Phase I effort was designing and fabricating an ovenized strontium source that also serves as a 2D+ MOT cell. In Phase II, we will integrate the strontium source into an all-glass-and-silicon vacuum system maintained by a miniature i ...

    STTR Phase II 2015 Department of DefenseNavy
  2. Computing With Chaos

    SBC: FirstPass Engineering PC            Topic: N12AT013

    Our initial, practical and potentially commercial approach, based upon years of basic and applied research in chaotic computation, was developed in Phase I of our project. Following upon phase I of the STTR project we propose, in Phase II, to engineer, synthesize, and exploit the rich, intrinsic dynamics of nonlinear and chaotic circuits and systems to implement reconfigurable, secure and noise re ...

    STTR Phase II 2014 Department of DefenseNavy
  3. First-principles-based framework for discovery and design of sustainable non-rare-earth high-temperature alloy systems

    SBC: CFD RESEARCH CORP            Topic: OSD12T06

    The aim of this STTR program is to develop protocols to discover rare-earth-free/rare-earth-lean magnetic alloys for replacing rare earth (RE) -based alloys for reducing the dependence of supply from China. The development of non-RE high temperature magnetic materials is very challenging. In Phase I, CFDRC in collaboration with its university partner has demonstrated a proof-of-concept computation ...

    STTR Phase II 2014 Department of DefenseOffice of the Secretary of Defense
  4. Grid-Spacing-Independent and Discretization-Order-Independent Simulation for Naval Single-Phase and Two-Phase Flow Applications

    SBC: Kord Technologies, Inc.            Topic: N15AT002

    Turbulent shear flows in naval applications are characterized by vastly different lengths and time scales associated with rotor tip vortices and the vortical structures shed from the ship, and additional phase from water drops and water vapor. To tackle the modeling challenges, we propose a novel methodology that combines a vorticity preserving method and a new approach to LES turbulence modeling ...

    STTR Phase I 2015 Department of DefenseNavy
  5. Hybrid High Ampacity Electric Power Cable

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N15AT016

    The Navy is interested in developing hybrid superconducting power transmission cables that would carry at least 5 kA of current and have a current density of at least 35 MA/m2. The cable should be able to carry 30 % of the rated current even when the superconducting cable fails. We propose to develop a hybrid superconducting cable, based on CORC cables, which potentially have a current density of ...

    STTR Phase I 2015 Department of DefenseNavy
  6. Improved Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: N15AT002

    Computational Sciences LLC will collaborate with the Rensselaer Polytechnic Institute (RPI) to develop and validate a stand-alone computational module that naturally accounts for the effects of turbulence. Such fluctuations and transitions may be associated with compressible flows and boundary layer interactions. The module will be designed for implementation in to existing legacy codes for use in ...

    STTR Phase I 2015 Department of DefenseNavy
  7. Improving the Life Expectancy of High Voltage Components Using Nanocomposite Surface Solutions

    SBC: Pneumaticoat Technologies Llc            Topic: N14AT025

    Moisture buildup on high voltage antenna components can cause electrical shorts that damage system parts and produce communication noise. Not only are significant costs incurred repairing and replacing damaged components, but critical operations communications can be disrupted by these electrical discharges. This STTR proposal will apply hydrophobic and superhydrophobic coatings to antenna compone ...

    STTR Phase I 2014 Department of DefenseNavy
  8. Information and Decision Recommender

    SBC: ARCHARITHMS INC            Topic: N14AT024

    The objective of this proposal is to develop an advanced Course of Action (COA) recommender that supports decision making. It is impossible for Warfighters to manually utilize the vast quantities of data at their disposal. To this end, advanced algorithms and data visualization are required to aid in analyzing the data and making informed decisions. The final output of such a system is actionable ...

    STTR Phase I 2014 Department of DefenseNavy
  9. Molecular Modeling Driven Design of High Density Energetic Materials

    SBC: CFD RESEARCH CORP            Topic: N12AT023

    Development of next generation energetic materials has been slow primarily due to a lack of fundamental understanding of the physics and chemistry of these materials. The strategy for development historically has been a trial-and-error experimental approach which possesses considerable risk of failure. With the advent of high speed computers and sophisticated molecular modeling techniques, it is n ...

    STTR Phase II 2014 Department of DefenseNavy
  10. Reliable Manufacturing of Scandia-Doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this STTR effort nGimat will partner with the University of Kentucky to develop a new process for manufacturing scandia-doped tungsten powder for use in vacuum tube cathode devices. While a significant amount of research over the last several decades has shown promise for scandate cathode materials, reliable manufacturing processes that enable commercialization of this technology have remained ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government