You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Durable, Multifunctional, Thermal Barrier Coatings for Marine Gas Turbines

    SBC: RELIACOAT TECHNOLOGIES, LLC            Topic: N16AT019

    Due to high power density and durability, gas turbines provide significant benefits in terms of efficiency and performance that in recent years, marine gas turbines have been deployed in commercial and cruise ships. Marine gas turbine technologies are essentially extensions of aero-gas turbine technology. Aero, land and marine engines have been used successfully for decades, recently there have be ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to show the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes big ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SENVOL LLC            Topic: N16AT022

    Additive manufacturing (AM) will reduce the delay times required in producing Naval parts that are no longer stocked. However, rapid qualification of parts is still a challenge when a limited number of components are required. To fully exploit the potential advantages of AM, a means of accurately addressing the reliability of AM components is required. By simulating the entire design-build-operati ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  5. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: IBC Materials & Technologies, LLC            Topic: N16AT005

    In this proposed SBIR program, IBC Materials & Technologies, in conjunction with our industry partner Mechanical Solutions, Inc. (MSI) and Texas A&M University, will leverage our knowledge and experience in the domain of industrial metallic coatings to develop a metallurgical coating solution for the Air Foil Bearing. IBC has deep expertise in a variety of industrial coating processes including mu ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Progressive Model Generation for Adaptive Resilient System Software

    SBC: GRAMMATECH INC            Topic: N13AT014

    Software provides critical functionality to the DoD, as well as to the communications, banking, and logistics industries we rely on. Runtime monitoring is now routinely applied to quickly identify and limit attacks. However, monitors have difficulty distinguishing good behavior from bad because intended application behavior varies widely. This proposal describes SMAC (Scenario-based Modeling & Che ...

    STTR Phase II 2015 Department of DefenseNavy
  7. Ultra scaling of SPAD arrays for high-speed laser ranging

    SBC: Lightspin Technologies Inc            Topic: N15AT011

    Ultrasensitive detection of visible light has a wide range of applications, including laser ranging and free-space optical communications. Ultimate sensitivity is achieved when individual return photons are counted with high probabilities of detection, low probabilities of false counts, and high bandwidth. Previously, Vacuum photomultiplier tubes provided good single photon detection sensitivities ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Reliable Manufacturing of Scandia-Doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this STTR effort nGimat will partner with the University of Kentucky to develop a new process for manufacturing scandia-doped tungsten powder for use in vacuum tube cathode devices. While a significant amount of research over the last several decades has shown promise for scandate cathode materials, reliable manufacturing processes that enable commercialization of this technology have remained ...

    STTR Phase I 2015 Department of DefenseNavy
  9. Cyber Resiliency for Critical Cyber Physical Systems

    SBC: GRAMMATECH INC            Topic: N15AT022

    Cyber physical systems are ubiquitous in the modern world; they control transportation, energy, military, medical, and manufacturing infrastructures. Cyber resiliency remains a problem in these systems that rely on both functional and real-time specifications to meet physical, and often safety-critical, goals. We propose a system that integrates existing software strengthening tools (e.g., automat ...

    STTR Phase I 2015 Department of DefenseNavy
  10. Advanced Silicon Diode Switch for HPRF Systems

    SBC: RADIATION DETECTION TECHNOLOGIES, INC.            Topic: N15AT023

    Silicon-based photoconductive switch technology, despite its widespread industrial use, has not reached its limit in repetition-rate nor recovery-time. While traditional Si-PCSS systems have demonstrated poor recovery time (tens to hundreds of microseconds), new understanding in absolute photo-carrier generation and the resultant reduced sweepout time, provides one means to get beyond this seeming ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government