You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Computational Methods for Dynamic Scene Reconstruction

    SBC: Near Earth Autonomy, Inc.            Topic: N16AT017

    Military and civilian agencies can benefit from systems that create 4D, spatio-temporal representations of dynamic scenes for target tracking, law enforcement, crowd control, disaster recovery, etc. Proliferation of imaging sensors such as surveillance cameras, car- and body-mounted cameras, and cell phones, provides the opportunity for reconstructing a dynamic scene in a very inexpensive way. Tod ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Cyber Forensic Tool Kit for Machinery Control

    SBC: TDI Technologies, Inc            Topic: N16AT013

    The objective of STTR Topic N16A-T013, Cyber Forensic Tool Kit for Machinery Control, is to develop live digital forensics that, at run time, provide a cyber-protection strategy and aid in identification of malfunctions due to malicious and non-malicious events, while ensuring minimal impact on overall system performance. A proposal has been prepared by TDI Technologies, Inc., a small business bas ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Detection Avoidance System for Submarines (DASS)

    SBC: DANIEL H. WAGNER ASSOCIATES, INCORPORATED            Topic: N14AT016

    In this STTR, Daniel H. Wagner Associates, together with the University of Michigan (UM), will develop a Detection Avoidance System for Submarines (DASS). The proposed DASS is a set of software modules which solves the probabilistic passive sonar equation (PSE) using given environmental acoustic data, assesses submarine vulnerability based on intelligence about potential threat ASW assets, recomme ...

    STTR Phase II 2016 Department of DefenseNavy
  4. Development of Atomistically-Informed Peridynamics Framework for Corrosion Fatigue Damage Prediction

    SBC: Advanced Cooling Technologies, Inc.            Topic: N13AT007

    Corrosive environments together with cyclic loading can lead to the formation of localized corrosion pits and corrosion fatigue cracks which can significantly deteriorate the structural integrity of aircraft components. The exact nature of corrosion fatigue damage is dependent on the competing multi-scale processes resulting from complex interactions between the structural material, its environmen ...

    STTR Phase II 2015 Department of DefenseNavy
  5. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY, LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to show the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes big ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Engineered DLC based Wear Resistant Coating For Extended Life Foil-Air Bearings

    SBC: NOKOMIS, INC            Topic: N16AT005

    Foil/air bearings have the benefit of negligible friction and wear once sufficient airflow is obtained; however, during spin up and spin down these bearings are subject to contact with the rotating surfaces upon which they act and thus are subject to frictional losses and wear. Modern air-cycle machines (ACMs) depend on solid lubricant based coating materials such as polyimide coatings to protect ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Grid-Spacing-Independent and Discretization-Order-Independent Simulation for Naval Single-Phase and Two-Phase Flow Applications

    SBC: Kord Technologies, Inc.            Topic: N15AT002

    Turbulent shear flows in naval applications are characterized by vastly different lengths and time scales associated with rotor tip vortices and the vortical structures shed from the ship, and additional phase from water drops and water vapor. To tackle the modeling challenges, we propose a novel methodology that combines a vorticity preserving method and a new approach to LES turbulence modeling ...

    STTR Phase I 2015 Department of DefenseNavy
  8. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  9. Improved Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: N15AT002

    Computational Sciences LLC will collaborate with the Rensselaer Polytechnic Institute (RPI) to develop and validate a stand-alone computational module that naturally accounts for the effects of turbulence. Such fluctuations and transitions may be associated with compressible flows and boundary layer interactions. The module will be designed for implementation in to existing legacy codes for use in ...

    STTR Phase I 2015 Department of DefenseNavy
  10. Improved Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications

    SBC: COMBUSTION RESEARCH AND FLOW TECHNOLOGY INC            Topic: N15AT002

    A research program to develop a modular turbulence modeling framework suitable for handling the disparate length scales inherent in naval aviation flowfields is proposed. The research seeks to provide accurate representation of multi-scale turbulent flows within an engineering-oriented framework by combining best practices using high-fidelity RANS/LES or DDES methods in the near-field wake region ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government