You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Aberration-correcting Topologically Optimized Metasurface (ATOM)

    SBC: Physical Sciences Inc.            Topic: HR001119S003524

    Metalenses, with their ability to arbitrarily control the amplitude and phase of light across a band of wavelengths, have the potential to disrupt imaging and communication systems which rely on traditional lenses to focus, collimate, and otherwise manipulate optical signals, and are under increasing pressure to operate with reduced size and weight. We propose to design, develop, and demonstrate a ...

    STTR Phase I 2020 Department of DefenseDefense Advanced Research Projects Agency
  2. Adaptive Distributed Allocation of Probabilistic Tasks (ADAPT II)

    SBC: APTIMA INC            Topic: A18BT007

    The future success of military teams operating in dynamic and uncertain environments will require the incorporation of artificial intelligence (AI) to help structure those teams, create plans of actions, execute those plans, and adapt plans as the environment and goals change. Successfully combining human of AI team members can achieve better results than either could on their own, but an uninform ...

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  3. Analog Co-Processors for Complex System Simulation and Design

    SBC: Arete Associates            Topic: ST15C002

    It has long been known that analog computers can be faster and more power efficient than digital processors by many orders of magnitude. Until the 1970s analog computers were the dominant controllers in most industrial and military applications. Even today digital processors are still slower and more power consumptive than analog, but offer much more flexibility (programmability) and precision. ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  4. Context-driven Active-sensing for Repair Tasks II (CART II)

    SBC: DYNAMIC OBJECT LANGUAGE LABS, INC.            Topic: ST14B003

    Existing machine perception systems are too inflexible, and are not robust enough to environmental uncertainty. In existing systems, perception components are statically (and manually) configured to process sensor data. The parameters of components in such a system are also statically tuned to operate optimally under very specific conditions. Information flow in such systems is bottom up, and gene ...

    STTR Phase II 2016 Department of DefenseDefense Advanced Research Projects Agency
  5. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: Ocean Bay Information and Systems Management, LLC            Topic: DLA15C001

    "Micro-calorimetry is a Nondestructive Test (NDT) capable of detecting heat characteristics that could identify improperly processed, counterfeit, substandard, nonconforming or fake raw material prior to materials introduction into end-product production cycles. Current calorimetric technology is an extremely sensitive, expensive and time consuming process, utilizing an adiabatic or semi-adiabat ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  6. Development of an Autonomous Glycemic Control Mechanism for Patients Suffering Glycemic Abnormalities as a Result of Critical Illnesses

    SBC: Beta Bionics, Inc.            Topic: ST18C004

    It is well established that hyperglycemia of critical illness, general glucose intolerance, and insulin resistance are common among critically ill patients, including those without a diagnosis of diabetes mellitus upon hospital admission. Such glycemic dysregulation has been linked to increased patient morbidity and mortality, and longer recovery times. Furthermore, tight glycemic control has been ...

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  7. IA 2: Intent-Capturing Annotations for Isolation and Assurance

    SBC: Immunant, Inc.            Topic: HR001120S0019001

    Software and hardware flaws can be exploited to make programs perform unintended computations or leak sensitive data. We propose to counter these threats by isolating libraries and other program units inside a single process. The developer will insert source-level annotations that i) map code and data units to compartments and ii) capture how each compartment is intended to interact with others, i ...

    STTR Phase I 2020 Department of DefenseDefense Advanced Research Projects Agency
  8. Marburg Virus Prophylactic Medical Countermeasure

    SBC: Flow Pharma, Inc.            Topic: CBD18A002

    Through this STTR contract, we propose to evaluate the efficacy of our vaccine, FlowVax Marburg, in nonhuman primates (NHPs). This will be achieved through four Tasks. In Task 1, we will manufacture the vaccine in a quantity sufficient for the animal studies. In Task 2, we will perform MHC genotyping on a representative population of NHPs and, based on results, select a set of MHC-matched NHPs for ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
  9. Marburg Virus Prophylactic Medical Countermeasure

    SBC: MAPP BIOPHARMACEUTICAL, INC.            Topic: CBD18A002

    There are currently no vaccines or therapeutics available for Marburg Virus Disease (MVD). Given the specter of weaponization and the terrible morbidity and high mortality rate of MVD, this represents a critical threat to the operational readiness of the Warfighter. While traditional vaccines have contributed greatly to public health, they have some limitations especially in the context of operati ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
  10. Memristor-CMOS Analog Co-Processor for Efficient Computation of PDEs

    SBC: SPERO DEVICES, INC.            Topic: ST15C002

    Spero Devices is proposing design of a memristor-CMOS co-processor to implement analog Discrete Fourier Transforms (DFTs). The analog co-processor invokes spectral methods to solve a class of linear and non-linear partial differential equations (PDEs) arising in the scientific simulation of complex systems. Current PDE solution methods are inefficient and often intractable due to limitations assoc ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government