You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Coupled System for Predicting SPE Fluxes

    SBC: PREDICTIVE SCIENCE INCORPORATED            Topic: T602

    Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel. They can also harm aircraft avionics, communication and navigation. We propose to develop a system to aid forecasters in the prediction of such events, and in the identification/lengthening of "all clear" time periods when there is ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  2. Advanced Gas Sensing Technology for Space Suits

    SBC: Intelligent Optical Systems, Inc.            Topic: T601

    The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on infrared absorption are candidate replacements, because of their proven long-term stability, despite their size and power consumption and failures in the presence of liquid water. No current compact sensor has the tolerance for liquid water ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  3. A Novel, Membrane-Based Bioreactor Design to Enable a Closed-Loop System on Earth and Beyond

    SBC: Mango Materials, Inc.            Topic: T604

    The proposed innovation is a membrane bioreactor system to produce a biopolymer from methane gas. This new methane fermentation process will expand and advance current gas delivery techniques to create affordable fermentation methods on Earth and beyond. Mango Materials is currently working to scale up and commercialize the production of polyhydroxyalkanoate (PHA) from methane, but its scaled-up ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  4. AstroCube: An Asteroid Prospecting CubeSat Mission

    SBC: Busek Co., Inc.            Topic: T402

    Busek, in partnership with Arizona State University (ASU), proposes to develop a robotic resource prospecting mission to a near-Earth asteroid using a 6U CubeSat, nicknamed "AstroCube". This ambitious mission is enabled by Busek's iodine-fueled BIT-3 RF ion propulsion system that can deliver ~1mN of thrust and ~2200sec of total Isp with 65W nominal input power. With 1.6kg of solid iodine propell ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  5. Compact Laser for In-Situ Compositional Analysis

    SBC: Q-PEAK INCORPORATED            Topic: T801

    In response to NASA?s solicitation for light-weight and power efficient instruments that enable in situ compositional analysis, Q-Peak in partnership with the University of Hawaii proposes to develop a compact, robust, and efficient instrument to combine all laser based spectroscopies capable of performing imaging, Raman, Laser Induced Breakdown, Laser Induced Fluorescence and LIDAR The main adva ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  6. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: VIBRANT CORPORATION            Topic: DLA15C001

    Vibrant Corporation and Sandia National Laboratories (SNL) propose to apply Process Compensated Resonance Testing (PCRT) to the DLA's need for an NDI method to detect counterfeit, nonconforming and improperly processed materiel. PCRT collects and analyzes the resonance frequencies of a component to detect structural defects, characterize material, analyze population variation, monitor manufacturin ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  7. Development of an Advanced Diamond TEC Cathode

    SBC: IOP Technologies LLC            Topic: T603

    NASA recognizes the importance of conservation, smart utilization and reuse of resources for their deep space missions to address the need for regeneration of air, water and waste with highly reliable systems to reduce mission payload. Additionally, energy for life support and other systems needs to be obtained from renewable energy sources or waste streams. In order to address NASA's requirements ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. High Performance Hybrid Upper Stage for NanoLaunch Vehicles

    SBC: Parabilis Space Technologies, Inc.            Topic: T101

    Parabilis Space Technologies, Inc (Parabilis), in collaboration with Utah State University (USU), proposes further development of a low-cost, high-performance launch vehicle upper stage that uses a high density, storable oxidizer and a polymer fuel grain as propellants in response to solicitation T1.01, Affordable Nano/Micro Launch Propulsion Stages. This effort will build upon the successful opti ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  9. Hybrid Modeling Capability for Aircraft Electrical Propulsion Systems

    SBC: PC Krause And Associates, Inc.            Topic: T1501

    PC Krause and Associates is partnering with Purdue University, EleQuant, and GridQuant to create a hybrid modeling capability. The combination of PCKA?s extensive dynamic modeling experience, Purdue?s work in electromechanical systems analysis, and GridQuant and Elequant?s development of the HELM algorithm uniquely positions the team to create this technology. HELM is a novel algorithm that solves ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design

    SBC: M4 ENGINEERING, INC.            Topic: T401

    We propose the development of a novel aerodynamic modeling approach making use of fully unstructured grids for unsteady panel aerodynamic models for aeroelastic and aeroservoelastic analysis. The unsteady aerodynamic code will be integrated with an existing suite of aeroelastic and aeroservoelastic analysis tools making it possible to perform aeroelastic and aeroservoelastic analysis of complex v ...

    STTR Phase II 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government