You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel, Low-Cost Phased arrays Manufactured by 3D Printing (1000-325)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N14AT021

    SI2 Technologies, Inc. (SI2) proposes to accelerate development of printed, high-efficiency phased arrays operating at Navy-relevant frequencies. The proposed development effort will include optimization of the array printing techniques from Phase I to meet the Navys phased array performance goals. The printed arrays will incorporate both printed radiating elements and an innovative printed packag ...

    STTR Phase II 2016 Department of DefenseNavy
  2. Nonlinear-DSP-Enabled RF-Photonic Link

    SBC: RAM PHOTONICS LLC            Topic: N14AT023

    Digital equalizers have been the major enablers in RF communications in terms of managing component imperfections and channel impairments. Specifically, the ever increasing processing power of the dedicating computing processors has availed a steady increase in the ability of complex communication systems to deal with impairments as well as allowing higher capacities in the information transfer.On ...

    STTR Phase II 2016 Department of DefenseNavy
  3. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
  4. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  5. In-Air E-field Sensor for Airborne Applications

    SBC: White River Technologies Inc            Topic: N15AT004

    The U.S. Navy is seeking new technologies and platforms to advance airborne anti-submarine warfare (ASW) and related maritime surveillance. Current magnetic anomaly detection (MAD) sensors, such as the latest versions of atomic magnetometers, are capable of very low noise operation. However, the performance of these sensors can be limited by the geomagnetic noise environment more so than by eithe ...

    STTR Phase II 2016 Department of DefenseNavy
  6. NAVAL INTEGRATED FIRE CONTROL COUNTER AIR (NIFC-CA)

    SBC: APTIMA INC            Topic: N09T007

    The Navy faces a significant challenge to its dominance of sea and air given the Anti-Access Area-Denial (A2AD) capabilities of major powers. The Navy's response, in part, is to implement technical capabilities that enable platforms to coordinate in new ways to execute offensive and defensive actions at very long range. While the Navy finalizes this Naval Integrated Fire Control-Counter Air (NIFC- ...

    STTR Phase II 2016 Department of DefenseNavy
  7. Light-Weight Solar Cells with High Specific Power and Conversion Efficiency

    SBC: AGILTRON, INC.            Topic: N14AT003

    Agiltron in collaboration with National Renewable Energy Laboratory (NREL) will develop a new class of high-efficiency and lightweight broadband inverted metamorphic multi-junction (IMM) solar cells for the uninterrupted flight missions of unmanned aerial vehicles (UAVs). The approach is closely coupled with Agiltrons extensive experience in high-transmittance broadband and wide-angle anti-reflect ...

    STTR Phase II 2016 Department of DefenseNavy
  8. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  9. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Computational Methods for Dynamic Scene Reconstruction

    SBC: Systems & Technology Research LLC            Topic: N16AT017

    The ubiquity of high-resolution imagery and video taken by surveillance cameras, handheld cameras, vehicle-mounted cameras, and airborne cameras is creating a rich source of dynamic data that offers opportunities for effectively solving defense, security and law enforcement problems. But in order to develop effective scene and activity understanding applications we must develop robust, accurate an ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government