You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  4. BioSENSE, for identification of allosteric transcription factor biosensors

    SBC: SYNVITROBIO, INC.            Topic: A18BT016

    There is a need to develop affordable and specific biosensors to defend against current and future biological threats. Biological methods of detection have been evolved by nature to detect molecules at the micro-scale with flexible specificity and with downstream effectors. Advances in cell-free technology allow for deployment of biosensors on pH-strip-type paper, an affordable, robust, disposable ...

    STTR Phase II 2020 Department of DefenseArmy
  5. Carbon Nanotube Based Monolithic Millimeter-wave Integrated Circuits

    SBC: Carbonics, Inc.            Topic: A18BT004

    Carbonics, Inc. is the only small business entity that is razor-focused on developing and commercializing wafers-scale carbon nanotube (CNT) based RF products for mmWave communications that can outperform incumbent semiconductor high frequency technologies (GaAs & RF-CMOS). Our STTR Phase I accomplishments exceeded all expectations, setting a new world record for CNT FET RF technology (fT > 100 GH ...

    STTR Phase II 2020 Department of DefenseArmy
  6. Circuit Integration for Robust Quantum Information Technology Scalability (CIRQuITS)

    SBC: VECTOR ATOMIC INC            Topic: A18BT014

    Vector Atomic and Stanford University will develop precision, ultra-low noise laser control electronics with low cost, size, weight, and power (C-SWaP). The electronics will be designed to broadly support the various laser types of used for quantum technology, which span 369-1550 nm. The C-SWaP and system architecture will support scaling of quantum systems to higher laser counts. The design will ...

    STTR Phase II 2020 Department of DefenseArmy
  7. Compressive Sensing Flash IR 3D Imager

    SBC: PHYSICAL SCIENCES INC.            Topic: A15AT007

    Physical Sciences Inc. in collaboration with Colorado State University proposes to develop a compact infrared flash 3D imaging sensor employing compressive sensing (CS) approaches. The CS 3D sensor offers a combination of high range resolution (10 cm), high point cloud density (6464 format), and fast 3D image frame rates (10 Hz) in a low cost, compact form factor employing commercial off the shelf ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  9. ConnextEdge: A Hierarchical Framework for Resilient Edge Analytics

    SBC: REAL-TIME INNOVATIONS, INC.            Topic: A19CT004

    The US Army aims to integrate multi-modal sensor data streams and advanced AI analytics at the tactical network edge in support of its vision for a future Internet of Battlefield Things. To maintain situational awareness within mission-acceptable levels despite dynamic conditions and infrastructure disruptions, we propose the ConnextEdge framework for resource-aware location-agnostic adaptive AI p ...

    STTR Phase I 2020 Department of DefenseArmy
  10. Electronically Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: Pranalytica, Inc.            Topic: A14AT015

    In response to the Army STTR Topic A14A-T015 solicitation for tunable high-power LWIR lasers for standoff detection applications, Pranalytica proposed to develop a compact, rugged and highly reliable wavelength tunable quantum cascade laser (QCL) module delivering over 5W of peak power and over 0.5W of average power in the spectral region spanning from 7 to 11m. The proposed approach is based on a ...

    STTR Phase II 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government