You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. An End-To-End Microfluidic Platform for Engineering Life Supporting Microbes in Space Exploration Missions

    SBC: HJ SCIENCE & TECHNOLOGY INC            Topic: T601

    HJ Science & Technology proposes a programmable, low-cost, and compact microfluidic platform capable of running automated end-to-end processes and optimization of cellular engineering and synthetic biology applications. In collaboration with Lawrence Berkeley National Laboratory and the Joint Genome Institute, we will establish the feasibility of the proposed microfluidic automation technology by ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  2. Dynamic ASE Modeling and Optimization of Aircraft with SpaRibs

    SBC: M4 ENGINEERING, INC.            Topic: T401

    We propose development and demonstration of a dynamic aeroservoelastic modeling and optimization system based on curvilinear internal structural arrangements of variable topology. This will allow combined sizing and topology optimization of complete airplane configurations including aeroservoelastic performance.

    STTR Phase I 2014 National Aeronautics and Space Administration
  3. Automated Manufacture of Damage Detecting, Self-Healing Composite Cryogenic Pressure Vessels

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: T1002

    During Phase I, Aurora Flight Sciences and the University of Massachusetts Lowell propose to demonstrate the feasibility of enhancing a commercially available out-of-autoclave (OOA) carbon prepreg material system (e.g. IM7/5320) via embedded structural health monitoring (SHM) and self-healing capabilities, which can be manufactured by an automated fiber placement (AFP) machine. This proposed "sma ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  4. Novel Metal Organic Framework Synthesis for Spacecraft Oxygen Capture

    SBC: BUSEK CO., INC.            Topic: T602

    Busek and University of Utah propose to develop novel metal organic framework (MOF) material to efficiently capture oxygen in spacecraft cabin environment. The proposed novel MOF is postulated to be capable of separating oxygen from ambient air with high efficiency, and at the same time, be stable to moisture and resistant to decomposition. In Phase I, our team shall synthesize the proposed MOF an ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  5. 3D Geolocation of Current Pulses in Clouds Using a 6-Axis EB Vector Sensor

    SBC: QUASAR FEDERAL SYSTEMS, INC.            Topic: T802

    Lightning discharges within or near critical facilities can disrupt activities or result in damage. Although existing lightning locating systems can geolocate breakdown processes with accuracies of 10s of meters at heights above 1.5-2 km, they do not accurately report ground strike locations or provide estimates of current and charge transfer. In addition, conventional VLF/LF LLS networks do not c ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  6. Free-Flying Unmanned Robotic Spacecraft for Asteroid Resource Prospecting and Characterization

    SBC: Honeybee Robotics, Ltd.            Topic: T402

    Embry-Riddle Aeronautical University (ERAU) and Honeybee Robotics (HBR) proposes to develop an integrated autonomous free-flyer robotic spacecraft system to support the exploration and subsequent resource utilization of asteroids as well as other planetary bodies and moons. The proposed spacecraft will address the first step towards In Situ Resource Utilization from Near Earth Object bodies; namel ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  7. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments

    SBC: ATA ENGINEERING, INC.            Topic: T1201

    ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response predictions for aerospace structures under critical inhomogeneous aeroacoustic loads. This will allow more accurate predictions of structural responses to be made, potentially reducing vehicle weight and cost and improving the reliability ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  8. The Application of 3D Additive Machining to Enhance the Affordability of a Small Launcher Booster Stage

    SBC: Garvey Spacecraft Corporation            Topic: T102

    The technical innovation proposed here expands upon early research into the viability of additive machining (AM) for liquid rocket engine components and other emerging capabilities to initiate TRL 6 flight test evaluations of candidate applications that could enhance the affordability of a small launch vehicle (SLV) booster stage. University of California, San Diego (USCD) has achieved success ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  9. Compact Isotope Analysis System for In-Situ Biosignature Investigation

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: T801

    We propose to develop a sensor for in-situ stable isotope analysis from a lander/rover on future planetary missions. The system will enable the collection of valuable information applicable to biosignature investigations, i.e., the search for evidence of life within the solar system. Current limitations to in-situ isotope measurements will be overcome by utilizing a hollow fiber optic based IR s ...

    STTR Phase I 2014 National Aeronautics and Space Administration
  10. In-Situ EBCs for High Performance Composite Propulsion Components

    SBC: PHYSICAL SCIENCES INC.            Topic: T1202

    Silicon Carbide based ceramic matrix composites (CMCs) offer the potential to fundamentally change the design and manufacture of aeronautical and space propulsion systems to significantly increase performance and fuel efficiency over current metal-based designs. Physical Sciences Inc. (PSI) and our team members at the University of California Santa Barbara (UCSB) will develop, design and fabricat ...

    STTR Phase I 2014 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government