You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase II 2018 Department of DefenseNavy
  2. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: Advanced Systems & Technologies Inc            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Innovative Multi-scale/Multi-physics based Tool for Predicting Fatigue Crack Initiation and Propagation in Aircraft Structural Components using Phase

    SBC: Coreform LLC            Topic: N16AT003

    The purpose of this Phase II project is to develop computational modeling methods that are able to describe the propagation and interaction of fatigue cracks using the phase-field methodology within the numerical framework of isogeometric analysis (IGA). The resulting computational platform, while focused on fracture and fatigue, will be general, in that any phase-field method can be easily incorp ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Compact Laser Drivers for Photoconductive Semicond

    SBC: Scientific Applications & Research Associates, Inc.            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  5. Hierarchical, Layout-Aware, Radiation Effects Tools Vertically Integrated into an EDA Design Flow for Rad-Hard by Design

    SBC: Reliable MicroSystems, LLC            Topic: DTRA16A003

    The goal of this workis to establish a radiation-aware capability in a commercial EDA design flow that will enable first-pass success in radiation resiliency for DoD ASIC designs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications.Such an integrated capability does not presently exist.The ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  6. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: Oceanit Laboratories, Inc.            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase II 2018 Department of DefenseNavy
  7. Evidence-Based, User-Centered Design Process for Improvement of the Utility of the Surface Electronic Warfare Display Suit

    SBC: PACIFIC SCIENCE & ENGINEERING GROUP, INC.            Topic: N11AT031

    In Naval, surface electronic warfare (EW), visual displays form critical bridges between warfighters and the complex operational radio-frequency (RF) spectrum they must monitor and interpret. Surface electronic warfare operators and supervisors must monitor and interact with multiple, stove-piped display systems in order to perform their work. Further, the visual displays they employ are not desig ...

    STTR Phase II 2018 Department of DefenseNavy
  8. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: Radiabeam Technologies, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The goal of this Phase II effort is to develop and validate Electron Beam Melting (EBM) additive manufacturing (AM) technology for the production of vacuum electronic devices meeting t ...

    STTR Phase II 2018 Department of DefenseNavy
  9. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Optimization of Fatigue Test Signal Compression Using the Wavelet Transform

    SBC: ATA Engineering, Inc.            Topic: N18BT029

    Traditional approaches to accelerated fatigue testing rely on heuristic methods with thresholds based mostly on experience and engineering judgment. These methods generally do not apply to the multiaxial dynamic loading situations characteristic of most aerospace applications and often result in uncharacteristic fatigue damage and failure modes during testing. To overcome the limitations of tradit ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government