You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Advanced Hit Detection Systems

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA13015

    FreEnt Technologies, Inc. (FreEnt) and Johns Hopkins Universitys Applied Physics Laboratory (APL) are proposing a multiple-hit detection sensor called the Optical Lethality Measurement System (OLMS). This system is based on the Planar Optical Penetration Sensor (POPS) technology (originally developed and patented by APL) and prior art associated with the Blast Initiation Detector (BID). The BID is ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  2. Decision Making under Uncertainty

    SBC: GCAS, Inc.            Topic: MDA13T001

    Our proposed second order uncertainty (SOU) product is a decision making software solution that addresses the problem of providing accurate and precisely defined decision courses of action (COAs) of complex, time-constrained problems in a fraction of the time required by alternative methods striving to achieve the same level of precision. Complex decision situations can deal with large volume of ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  3. Deep Learning with Whole-Scene Contextual Reasoning for Target Characterization

    SBC: ExoAnalytic Solutions, Inc.            Topic: MDA15T001

    ExoAnalytic Solutions is developing DEEPR (Deep Learning with Whole-Scene Contextual Reasoning for Object Characterization), an advanced multi-sensor multi-object classifier for integrated object characterization. The overall objective of DEEPR is to develop a suite of advanced, novel techniques that combine innovative advances in deep, hierarchical machine learning together with recurrent Deep L ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  4. Dim Target Extraction and Conjoint Tracking (DTECT) Enhancements for Missile Defense Applications

    SBC: TOYON RESEARCH CORPORATION            Topic: MDA12T004

    Overhead Persistent Infrared (OPIR) platforms observe challenging threat and scene phenomenology. Toyon Research Corporation developed an image processing framework for clutter estimation/suppression and track-before-detect to jointly detect and track targets. The Target Extraction and Conjoint Tracking application, developed under initial Phase II funding and demonstrated using real-world data so ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  5. Fine Powder Cathode and Separator Binder Characterization for Thermal Batteries

    SBC: CFD Research Corporation            Topic: MDA16T001

    Fine powder thermal battery cathode materials can exhibit challenging flow properties which makes processing with automated presses difficult.Granulating these powders substantially improves flow properties and reduces the tendency for powder segregation during handling and pressing operations.The properties of Magnesium Oxide (MgO) that lead to good performance in thermal battery separators are n ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  6. Fine Powder Cathode and Separator Binder Characterization for Thermal Batteries

    SBC: CFD Research Corporation            Topic: MDA16T001

    Fine powder thermal battery cathode materials can exhibit challenging flow properties which makes processing with automated presses difficult.Granulating these powders can substantially improve flow properties and reduce the tendency for powder segregation during handling and pressing operations.Additionally, the properties of MgO that lead to good performance in thermal battery separators are not ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  7. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., along with A2Z Innovations, Inc. (A2Z) and the University of Alabama in Huntsville (UAH) are teaming together to design and develop a High-Speed Simultaneous Multiple Object Detection (HS-SMOD). The HS-SMOD system uses a simple but innovative technique of a passive fiber-optic grid and opto-electronic detectors to measure the initial and subsequent hit points of extremel ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  8. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., A2Z Innovations, Inc., and the University of Alabama Aerospace Research Center (UAH/ARC) have teamed together to design, develop, and perform ground-based-demonstrations of a High-Speed Simultaneous Multiple Object Detection (HS-SMOD) System for MDA. The HSSMOD system uses a simple but innovative technique of a passive fiber-optic grid and high-speed COTS opto-electronic ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  9. Interactive Sensor Fusion for Context-Aware Discrimination

    SBC: Opto-knowledge Systems, Inc.            Topic: MDA15T001

    We propose a novel computational framework for discrimination that incorporates sensor data from observations of the engagement and from kill assessment (KA) that such sensors can provide. The KA information is combined with data from other sensors to improve the discrimination decision and to reduce the probability of correlated shots. Approved for Public Release 16-MDA-8620 (1 April 16)

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
  10. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government