You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Optimization of Fatigue Test Signal Compression Using the Wavelet Transform

    SBC: ATA ENGINEERING, INC.            Topic: N18BT029

    Traditional approaches to accelerated fatigue testing rely on heuristic methods with thresholds based mostly on experience and engineering judgment. These methods generally do not apply to the multiaxial dynamic loading situations characteristic of most aerospace applications and often result in uncharacteristic fatigue damage and failure modes during testing. To overcome the limitations of tradit ...

    STTR Phase I 2018 Department of DefenseNavy
  2. An Integrated Materials Informatics/Sequential Learning Framework to Predict the Effects of Defects in Metals Additive Manufacturing

    SBC: Citrine Informatics, Inc.            Topic: N18AT013

    In this project, Citrine Informatics and the ADAPT Center at the Colorado School of Mines propose to build an informatics-driven system to understand the effects of defects in additive manufactured parts. The entire history of each sample will be captured on this system; from specific printing parameters and details of precursor materials through to part characterizations and performance measureme ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Analysis and Application of Treatments to Mitigate Exfoliation Corrosion (Delamination) of 5XXX Series Aluminum

    SBC: OCEANIT LABORATORIES INC            Topic: N18AT016

    Oceanit proposes to research and develop chemical or non-chemical methods and processes to impart surface morphology modifications to aluminum-magnesium (Al-Mg) alloys to mitigate and increase the exfoliation corrosion resistance.

    STTR Phase I 2018 Department of DefenseNavy
  4. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    The US Navy operates a vast fleet of combat and support vessels with complex power control systems under the control and decision authority of human operators. Several current resources such as SPY-1D radar and Vertical Launch System (VLS) and future resources such as railgun, AMDR, and high energy laser (HEL) are energy hungry, exceeding current and planned power generation capability when deploy ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Environmental Temperature Sensing Tow Cable

    SBC: MAKAI OCEAN ENGINEERING INC            Topic: N18AT017

    The U.S. Navy currently utilizes a number of towed systems from surface ship and submarines for sensing and communication applications. In a number of these cases, a tow cable extends either down from a surface ship or up from a submarine through the upper part of the water column where seawater temperature can be both highly variable vs. depth and dynamic in time and geographic location. Having a ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Active Imaging through Fog

    SBC: SA PHOTONICS, LLC            Topic: N18AT021

    Active imaging systems are used to for imaging in degraded visual environments like that found in marine fog and other environments with a high level of attenuation and scattering from obscurants like fog, rain, smoke, and dust.These systems are still limited in range and resolution. SA Photonics is taking advantage of multiple image enhancement techniques, like wavelength tunability, pulse contro ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Cubic Boron Nitride Claddings for Friction Stir Tooling

    SBC: Plasma Processes, LLC            Topic: N18AT026

    Friction stir welding (FSW) is an attractive joining method where high strength low porosity welds can be attained. However, the high temperatures and forces required for welding high strength materials like steel require the use of exotic tools. Cubic boron nitride (cBN)-based tools offer attractive tool wear characteristics in steels, but are very costly. Conversely, refractory metal alloys are ...

    STTR Phase I 2018 Department of DefenseNavy
  8. System for Nighttime and Low-Light Face Recognition

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: SOCOM18A001

    The objective of this proposal is to develop instrumentation and algorithms for acquiring facial features for facial recognition in low- and no-light conditions.We will use cross-spectrum matching by exploiting infrared polarimetric imagery which tends to show features that match more closely visible imagery than conventional infrared.In addition to thermal infrared, we will also test subjects in ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  9. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Hal Technology’s proprietary, compact, rugged, flush-mounted, fiber-optic sensor platform measures particulate size, size distributions, and concentration for real-time engine health monitoring. Our proposed sensor will use an innovative hybrid disc ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government