You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Advanced Data Association Algorithms to Address Emerging Threats

    SBC: Archarithms, Inc            Topic: MDA19T001

    The proposed approach provides innovative sensor data association algorithms capable of performing correct data association in multi-target tracking environments with one or more sensors. Current air and missile threats have the ability to fly non-ballistic, highly maneuvering hypersonic trajectories, and the ability to maintain closely spaced trajectories. Improved detection/track association is ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  2. Advanced Hit Detection Systems

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA13015

    FreEnt Technologies, Inc. (FreEnt) and Johns Hopkins Universitys Applied Physics Laboratory (APL) are proposing a multiple-hit detection sensor called the Optical Lethality Measurement System (OLMS). This system is based on the Planar Optical Penetration Sensor (POPS) technology (originally developed and patented by APL) and prior art associated with the Blast Initiation Detector (BID). The BID is ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  3. Dynamic Emulated System In Loop

    SBC: Verisi Corporation            Topic: MDA19T006

    The Ballistic Missile Defense System (BMDS) is aptly described as a system of systems. Each subsystem within the BMDS is comprised of many custom-designed firmware and software elements. The designs can only be integrated together upon receipt of physical hardware (Circuit Card Assemblies). This delay introduces significant risk to the developer and procurer since system-level design issues may no ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  4. Fine Powder Cathode and Separator Binder Characterization for Thermal Batteries

    SBC: CFD Research Corporation            Topic: MDA16T001

    Fine powder thermal battery cathode materials can exhibit challenging flow properties which makes processing with automated presses difficult.Granulating these powders substantially improves flow properties and reduces the tendency for powder segregation during handling and pressing operations.The properties of Magnesium Oxide (MgO) that lead to good performance in thermal battery separators are n ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  5. Fine Powder Cathode and Separator Binder Characterization for Thermal Batteries

    SBC: CFD Research Corporation            Topic: MDA16T001

    Fine powder thermal battery cathode materials can exhibit challenging flow properties which makes processing with automated presses difficult.Granulating these powders can substantially improve flow properties and reduce the tendency for powder segregation during handling and pressing operations.Additionally, the properties of MgO that lead to good performance in thermal battery separators are not ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  6. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., along with A2Z Innovations, Inc. (A2Z) and the University of Alabama in Huntsville (UAH) are teaming together to design and develop a High-Speed Simultaneous Multiple Object Detection (HS-SMOD). The HS-SMOD system uses a simple but innovative technique of a passive fiber-optic grid and opto-electronic detectors to measure the initial and subsequent hit points of extremel ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  7. High-Speed Simultaneous Multiple Object Detection System

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA16T006

    FreEnt Technologies, Inc., A2Z Innovations, Inc., and the University of Alabama Aerospace Research Center (UAH/ARC) have teamed together to design, develop, and perform ground-based-demonstrations of a High-Speed Simultaneous Multiple Object Detection (HS-SMOD) System for MDA. The HSSMOD system uses a simple but innovative technique of a passive fiber-optic grid and high-speed COTS opto-electronic ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  8. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GeneCapture, Inc.            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  9. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point ofCare Applications

    SBC: GeneCapture, Inc.            Topic: CBD15C001

    GeneCapture, Inc. is proposing to develop a rapid in vitro diagnostic prototype using our patented molecular-based CAPTURE (ConfirmActive Pathogens Through Unamplified RNA Expression) assay. Based on the results and experience gained in our Phase I STTR contractHDTRA1-16C-0061: Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications, we p ...

    STTR Phase II 2018 Department of DefenseOffice for Chemical and Biological Defense
  10. Microelectronics Component Adhesive Selection and Design Rules for Failure Avoidance

    SBC: CFD Research Corporation            Topic: MDA14T002

    Thermally induced fatigue and residual stress introduced during fabrication are sources of stress related failure in microelectronics, which raises concerns about product reliability and specification. CFDRC has teamed with experts in the reliability of microelectronics packaging to develop a testing and physics based modeling protocol to correlate material properties and thermal loading conditio ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government