You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Room Temperature Quantum Memory

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF19BT001

    Quantum computer technology is so critical and strategic that the Air Force Research Laboratory is itself working on a quantum bit focused on the trapped ytterbium (Yb+) ion. The current technology based on entangling electrons, photons, or ions are challenging to put together in multiple qubits. To make a qubit stable, it is essential to protect it from outside interferences that can disrupt the ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Full Mueller Matrix Characterization of Imaged Samples using Digital Holography

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF18AT007

    The Phase II effort will be to clearly demonstrate the feasibility and build a prototype of a noncontact, high-quality holographic polarimetry system with pixel level depth and Mueller matrix information with a user-friendly interface to image and display this data. The measurements of each data product will be validated with trusted truth samples. The system will be reproducible and will have a d ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Ultra Wideband Receiver (UWR) – Sample Clock Modulation

    SBC: OCEANIT LABORATORIES INC            Topic: AF18CT003

    Modern electronic warfare (EW) employs agile, dynamic, convert waveforms. It has become challenging for legacy electronic intelligence (ELINT) receivers to intercept such waveforms. To cover a wide frequency band, many frequencies must be scanned rapidly. Therefore, the probability of intercepting by the super heterodyne receiver is limited by the intermediate frequency (IF) bandwidth and tuning s ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Portable Bioprinted Organoids for Physiological Monitoring

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT002

    hazardous chemicals such as JP8, chromium, and byproducts of led-free frangible ammunition and to hazardous environments. Of the many dangers Airmen face, the hypoxia-like unexplained physiological events pilots face are some of the most dangerous and elusive. Current wearable sensors cannot decouple complex, interdependent in vivo response. We propose to develop (design, fabricate, test, and demo ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Multi Scale Multi Fidelity Carbon-Carbon Manufacturing Process Modeling with Data Fusion

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT021

    The proposed effort aims to deliver a novel process model for carbon-carbon manufacturing to determine thermo-mechanical properties of these materials and their components, thereby enabling a faster cycle for material development for hypersonic platforms. The proposed solution consists of (1) requirement and functionality analyses, (2) a six-level model representing the key steps of the manufactur ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. STTR Phase I: Wirelessly Enabled and Distributed Energy Storage Systems Technology

    SBC: JAQ Energy LLC            Topic: EW

    The broader impact/commercial potential of this project includes the development and proof-of-concept prototype demonstration of a new wirelessly-enabled and distributed battery energy storage system technology which can result in significant contributions to wide range of applications that critically depend on energy storage systems and energy availability. These applications include electrificat ...

    STTR Phase I 2019 National Science Foundation
  7. Flexible Broad-band Optical Device

    SBC: OCEANIT LABORATORIES INC            Topic: AF17AT010

    Oceanit proposes to first is to use radiative transfer techniques pioneered for astrophysics, instead of Monte Carlo simulation. In particular, we used a variant of the Bohm-Vitense method, which expresses the solution as a weighted sum of basis functions, allowing us to convert the radiative transfer equation into a set of linear equations that we can solve with standard linear algebra methods. S ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. Electronically Dimmable Eye Protection Devices (EDEPD)

    SBC: Aegis Technologies Group, LLC, The            Topic: AF18BT003

    Electronically dimmable materials with sufficiently strong visible transmission shift, color neutrality, durability and switching speeds have eluded development since the search began nearly half a century ago. We demonstrate the potential for dynamic optical dimming using plasmonic nanostructures with electrodynamic simulations of promising plasmonic metamaterial architectures. In order to achiev ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. High Speed High Accuracy Artificial Neural Networks for UAV based Target Identification

    SBC: UHV TECHNOLOGIES, INC.            Topic: AF18BT007

    The machine learning and artificial intelligence community has recently garnered much attention for ground breaking performance of novel neural network architectures for self-driving cars. One of the machine learning methods used in self-driving cars is semantic segmentation. In this fashion each pixel in an image is label with a class, allowing for contour-based image segmentation which is differ ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Low-Energy Adiabatic Circuits for Space Applications

    SBC: SIGNAL SOLUTIONS LLC            Topic: AF18BT013

    Adiabatic logic-based energy-conserving circuits have potential to significantly improve energy efficiency. Adiabatic circuits recycle charge stored in load capacitance resulting in lower power dissipation as compared to conventional CMOS. However, these circuits have only targeted low-frequency operations. Research is needed to develop adiabatic logic circuits for high performance applications wi ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government