You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    With the advent of the Navy’s newest classes of all-electric vessels, the interdependence and functional correlation of the power plant with other mission-critical ship systems such as integrated cooling, weapons, navigation, air surveillance, and IT control network systems, maintaining optimal oversight and control of power distribution aboard ship becomes increasingly challenging. As the opera ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Conjugate heat transfer for LES of gas turbine engines

    SBC: CASCADE TECHNOLOGIES INC            Topic: N19BT027

    Current design tools for gas turbine engines invoke a variety of simplifying assumptions to estimate heat transfer to solid/metal engine components (e.g., isothermal boundary conditions). These approximations are often not valid, result in inaccurate predictions of heat transfer, and ultimately compromise the thermal integrity of propulsion and power systems. Wall-modeled large eddy simulation (WM ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Large Eddy Simulation (LES) Flow Solver Suitable for Modeling Conjugate Heat Transfer

    SBC: Kord Technologies, Inc.            Topic: N19BT027

    Accurate prediction heat transfer in gas turbine components subject to cooling requires high fidelity modeling of heat transfer in the presence of high Reynolds number turbulent flow. The cooling internal to the blades results in sustained temperature gradients within the structural parts, from low temperature in the interior of the structure to increasingly higher temperature closer to the surfac ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Data Science Techniques for Various Mission Planning Processes and Performance Validation

    SBC: Perceptronics Solutions, Inc.            Topic: N19BT029

    Mission and planning is a difficult and time-consuming process that places a heavy burden on manpower and critical thinking and is performed under significant pressure. Existing and emerging artificial intelligence (AI) and machine learning (ML) techniques are well-suited to assisting humans with these challenges. While the promise of AI/ML is great, there are significant obstacles to operationali ...

    STTR Phase I 2019 Department of DefenseNavy
  5. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: EH GROUP INC            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  6. High-Definition 3D Liver-on-a-Chip with Real-Time Biosensing Enabled by Beam Pen Lithography

    SBC: TERA-PRINT LLC            Topic: AF19AT002

    This project will bring unparalleled capabilities of beam pen lithography (BPL) to the fields of 3D bioprinting, biofabrication, and tissue engineering by enabling the rapid construction of large-volume 3D hydrogel structures with the tunable architecture and mechanical properties at the micron scale. Not only will BPL 3D printing allow the construction of considerably more biologically relevant t ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Full Mueller Matrix Characterization of Imaged Samples using Digital Holography

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF18AT007

    The Phase II effort will be to clearly demonstrate the feasibility and build a prototype of a noncontact, high-quality holographic polarimetry system with pixel level depth and Mueller matrix information with a user-friendly interface to image and display this data. The measurements of each data product will be validated with trusted truth samples. The system will be reproducible and will have a d ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. High-Performance Activewear and Workwear made from Virgin and Recycled Cotton

    SBC: Natural Fiber Welding, Inc.            Topic: A17AT013

    Natural Fiber Welding, Inc. (NFW) is developing revolutionary textile manufacturing processes that both increase performance of biodegradable natural fibers while decreasing manufacturing costs. Benefits of NFW’s technologies include greatly increasing the performance of cotton, including mechanically recycled cotton. Today there are billions of pounds of waste cotton textiles that are landfille ...

    STTR Phase II 2019 Department of DefenseArmy
  9. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD RESEARCH CORPORATION            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Aircraft Thermal System Evaluation and Analysis Tools

    SBC: CU AEROSPACE L.L.C.            Topic: N19BT025

    This STTR project proposed by CU Aerospace (CUA) and research partner the University of Illinois at Urbana-Champaign (UIUC) will provide innovative thermal management systems-level analysis tools to the Navy, enabling detailed investigations of air platform thermal management issues associated with electronics loads (e.g., avionics/radar upgrades for military aircraft). The Phase I effort focuses ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government