You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  2. Embedded Sensors for Flight Test (Every Aircraft a Test Aircraft)

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF14AT01

    Increasing system capabilities in terms of weapon systems, ISR payloads, GNC, etc., enabled by smaller and more capable electronics systems have led to a trend for overall size reduction in military aircraft. This has resulted in a reduction in the avail...

    STTR Phase II 2016 Department of DefenseAir Force
  3. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. High Hesitivity Magnetic Materials for Magnetic Toroid and Flat Dipole Antennas

    SBC: JEM ENGINEERING, LLC            Topic: N16AT001

    In our Phase I program, JEM and ASU will demonstrate a low cost manufacturing process to achieve the full theoretical hesitivity of a magnetic film that would enable greater effective hesitivity laminate. In Phase II we will develop a viable continuous process for two such materials to achieve light weight, low cost, and improved radiation efficiency; and we will seek to productize this process to ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Absolute Cognitive WorklLoad (ACOWL)

    SBC: ADVANCED INFONEERING, INC.            Topic: N16AT002

    The proposed work will lead to a body-worn, unobtrusive, rugged, and easy to use sensor kit and analysis software solution that will provide the Navy with reliable absolute workload measures of aircrew in real-world test and evaluation settings. We call this the ACOWL (Absolute Cognitive Work Load) system. The Navy currently has numerous new technologies in its roadmap which could have significant ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: IBC Materials & Technologies, LLC            Topic: N16AT005

    In this proposed SBIR program, IBC Materials & Technologies, in conjunction with our industry partner Mechanical Solutions, Inc. (MSI) and Texas A&M University, will leverage our knowledge and experience in the domain of industrial metallic coatings to develop a metallurgical coating solution for the Air Foil Bearing. IBC has deep expertise in a variety of industrial coating processes including mu ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Durable, Low Friction Coatings For Air Cycle Machine Foil Bearings

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: N16AT005

    Technology Assessment and Transfer will demonstrate the potential of novel, low friction and low wear coatings that are capable of providing long term durability for air cycle machine foil bearings. A systematic approach with a high probability of success includes the following: unique low friction, wear resistant alloys and lubricating ceramic composites, magnetron sputtering, the ideal method fo ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Nanoporous block polymer separators for high performance and safe Li-ion batteries

    SBC: ADA TECHNOLOGIES, INC.            Topic: N16AT008

    To meet Navy needs for high performance and safe lithium ion (Li-ion) batteries for naval aircraft, ADA Technologies Inc. (ADA) and its university collaborator propose to develop and optimize tailor designed nanoporous separators derived from functionalized block copolymers (polyolefins) with low cost precursors. The innovative strategy provides a powerful tool to allow exquisite tuning of perform ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government