You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra-Wideband, Low-Power Compound Semiconductor Electro-optic Modulator

    SBC: FREEDOM PHOTONICS LLC            Topic: N13AT005

    Freedom Photonics is proposing to develop a novel modulator concept. The overall objective of this program is to develop a novel compound-semiconductor electro-optic modulator that simultaneously exhibits 100-GHz operation, optical/microwave velocity matc

    STTR Phase II 2015 Department of DefenseNavy
  2. Type System for Naval Essential Tasks

    SBC: DATANOVA SCIENTIFIC LLC            Topic: N15AT017

    Knowledge graphs are information networks with a specific topology. The topology is simple enough that we do not need graph grammars to specify the subgraphs that belong to a mission graph. Knowledge graphs can be modeled as terms of an algebraic data type in a type system called Flutes. Flutes was created by Datanova Scientific to rigorously analyze formal approaches to semantic integration. This ...

    STTR Phase I 2015 Department of DefenseNavy
  3. SOCRATES Maritime Multi-access Optical Communication and System

    SBC: SA PHOTONICS, LLC            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition threat search and track capability. SA Photonics will team with the Prof. Michal Lipson of the Lipson Nanophotonics Group at Columbia University wh ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Socio-computational Methods to Detect and Predict Bot Activity in Novel Information Environments

    SBC: Intelligent Automation, Inc.            Topic: N15AT020

    Intelligent Automation, Inc. (IAI) proposes to understand social bots behaviors, extract indicators, develop socio-computational models with predictive capabilities to detect bot activity, and implement them in a mature social media analytics software tool. Our approach will use predictive socio-computational models that exploit context, user, friends, temporal, and network features of social medi ...

    STTR Phase I 2015 Department of DefenseNavy
  5. Ship Airwake Measurement System

    SBC: CREARE LLC            Topic: N13AT015

    Measurement surveys of full-scale ship airwakes are needed to validate computational fluid dynamics (CFD) models of these wakes. Airwake computations guide the design of ship superstructures, improve the fidelity of flight simulators, and save time and reduce risk during flight tests to define launch and recovery envelopes for ship and aircraft combinations. Current full-scale test techniques invo ...

    STTR Phase II 2015 Department of DefenseNavy
  6. Seabed Imaging System

    SBC: CREARE LLC            Topic: N14AT022

    Acoustic imaging is the preferred modality for mine detection. However, acoustic images are noisy and difficult to interpret due to acoustic clutter, the interaction of sound with the seafloor, and potential penetration of sound into the sediment with subsequent reflection. Creare is developing a Seabed Imaging System (SIS) capable of providing detailed information on both the topography and compo ...

    STTR Phase II 2016 Department of DefenseNavy
  7. Robust Mission and Safety Critical Li-Ion BMS for Aerospace Applications

    SBC: Space Information Laboratories, LLC            Topic: N15AT001

    Space Information Labs (SIL) and South Dakota State University (SDSU) have teamed to provide Navy an innovative, but also producible, approach to a robust mission and safety critical Li-Ion battery man-agement system across Navy platforms to include aircraft, helicopters, UAS, missiles and directed energy weapons. SILs modular and scalable Li-Ion Intelli-Pack battery system will be designed to fro ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Reliable Manufacturing of Scandia-Doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this STTR effort nGimat will partner with the University of Kentucky to develop a new process for manufacturing scandia-doped tungsten powder for use in vacuum tube cathode devices. While a significant amount of research over the last several decades has shown promise for scandate cathode materials, reliable manufacturing processes that enable commercialization of this technology have remained ...

    STTR Phase I 2015 Department of DefenseNavy
  9. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: VEXTEC Corporation            Topic: N16AT004

    The Phase I objective is a proof of concept capability integrating process information, material properties and damage tolerance simulations into the Additive Manufacturing (AM) design certification process. VEXTEC has a toolbox of software and methods that consists of various software modules in multiple formats that are used to assess the durability of parts processed by traditional methods of c ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: STOCHASTECH CORPORATION            Topic: N15AT006

    The computation and real-time implementation of controls in nonlinear systems remains one of the great challenges for applying optimal control theory in demanding aerospace and industrial systems. Often, linearization around a set point is the only practical approach, and many controllers implemented in hardware systems are simple linear feedback mechanisms. From proportional guidance in missiles ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government