You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Deep Learning based Automated Ultrasonic Vocalizations Scoring: DLAS

    SBC: Intelligent Automation, Inc.            Topic: DHP16C003

    Ultrasonic vocalizations (USVs) provide an excellent behavioral measure that can be used to understand the effects of traumatic stressors on behavior and can be used to screen and identify therapeutic treatments. This provides a strong justification for the use of rodent USVs as a model for emotional processing in PTSD. Since there are no commercially available USV assessment software programs tha ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Electrotextile Systems for Human Signatures Monitoring

    SBC: Mantel Technologies, Inc.            Topic: DHA17A001

    Investments by the Department of Defense (DOD) have led to the development and demonstration of electronic textiles capable of transforming traditional textile systems into wearable power and data systems. The Defense Health Agency (DHA) has identified an opportunity to leverage advancements in smart garment systems for military personnel to aid in the prediction in performance declines and healt ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GeneCapture, Inc.            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  5. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. Marburg Virus Prophylactic Medical Countermeasure

    SBC: Flow Pharma, Inc.            Topic: CBD18A002

    Through this STTR contract, we propose to evaluate the efficacy of our vaccine, FlowVax Marburg, in nonhuman primates (NHPs). This will be achieved through four Tasks. In Task 1, we will manufacture the vaccine in a quantity sufficient for the animal studies. In Task 2, we will perform MHC genotyping on a representative population of NHPs and, based on results, select a set of MHC-matched NHPs for ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
  7. Marburg Virus Prophylactic Medical Countermeasure

    SBC: MAPP BIOPHARMACEUTICAL, INC.            Topic: CBD18A002

    There are currently no vaccines or therapeutics available for Marburg Virus Disease (MVD). Given the specter of weaponization and the terrible morbidity and high mortality rate of MVD, this represents a critical threat to the operational readiness of the Warfighter. While traditional vaccines have contributed greatly to public health, they have some limitations especially in the context of operati ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
  8. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: Bayspec, Inc.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Medical Electro-Textile Sensor Simulation

    SBC: LR TECHNOLOGIES, Inc.            Topic: DHA17A001

    LRT proposed to design a EMF detection system using future textile materials for combat uniforms. The sensor and signal processing design will be evaluated in phase I.

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. Modeling of Polytonic Dose Response Relationships

    SBC: LipoSeuticals Inc            Topic: DHP16C001

    Dose response relationships are fundamental to pharmacology and many other fields. Increasingly, scientists are encountering polytonic dose response relationships. These relationships are not well-characterized by linear and s-shaped models. Our team has extended the traditional 4 parameter logistic model by replacing the dose parameter with the quadratic function as an effective dose function. Th ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government