You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. N/A

    SBC: ALAMEDA APPLIED SCIENCES CORPORATION            Topic: N/A

    N/A

    STTR Phase II 1999 Department of Energy
  2. N/A

    SBC: Cryogenic Applications F, Inc.            Topic: N/A

    N/A

    STTR Phase II 1999 Department of Energy
  3. Nano-Patterned Cathode Surfaces for High Efficiency Photoinjectors

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 05a

    Metal photoinjector cathode development has shown recent promise with nano-patterning technology. However, in order to be competitive with semi-conductor cathodes, a further enhancement in efficiency is needed. TECHNICAL APPROACH Specific nano-patterning of sub-wavelength features to produce antennae provides coupling of incoming laser light with the surface of the metal cathode. Bowtie nano-anten ...

    STTR Phase II 2016 Department of Energy
  4. Single-shot Picosecond Temporal Resolution Transmission Electron Microscopy

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 07a

    Transmission electron microscopy (TEM) is one of the primary tools for biological and materials characterization and has many important research applications. There is an overarching need to improve the temporal resolution of TEMs. State-­‐of-­‐the-­‐art single shot TEM only achieve 10 nanoseconds temporal resolution. Technical Approach UCLA and RadiaBeam Tec ...

    STTR Phase II 2016 Department of Energy
  5. 26(a): High Duty Cycle Inverse Free Electron Laser

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 26a

    Laser based advanced accelerators can achieve very high accelerating gradients, but their duty cycle is limited by the laser power availability and media recovery time. Inverse Free Electron Laser (IFEL) is a vacuum farfield laser accelerator scheme which does not rely on a medium (plasma) or a structure (metal or electric) and therefore is potentially capable of accelerating charged particles ver ...

    STTR Phase II 2016 Department of Energy
  6. A Comprehensive Web Infrastructure for Standardizing, Storing, and Launching Density Functional Calculations of Materials and Chemical Compounds

    SBC: Citrine Informatics, Inc.            Topic: 9a

    Density functional theory is used by many researchers funded by the Department of Energy as a method for predicting the behavior of chemicals and materials used in energy applications. However, results of these calculations are often not standardized and, even when they are, expert-level understand of the methods is needed in order to properly perform a simulation. The energy research community a ...

    STTR Phase II 2016 Department of Energy
  7. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  8. Algal Bioflocculation for SolidLiquid Separation

    SBC: MICROBIO ENGINEERING INC            Topic: 12c

    A key requirement for microalgae biofuels production is a very low cost harvesting technology. Commercially available solidliquid separation technologies applicable to microalgae, such as chemical coagulation, membrane separations and centrifugation, are too costly for biofuels production or other lowcost microalgae processes, such as wastewater treatment. A low cost harvesting process is bio floc ...

    STTR Phase II 2016 Department of Energy
US Flag An Official Website of the United States Government