You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compact Laser Drivers for Photoconductive Semicond

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  2. Epitaxial GaN on flexible metal tapes for low-cost transistor devices

    SBC: IBEAM MATERIALS, INC.            Topic: 1

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2014 Department of EnergyARPA-E
  3. Epitaxial GaN on Flexible Metal Tapes for Low-Cost Transistor Devices

    SBC: IBEAM MATERIALS, INC.            Topic: DEFOA0000941

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2016 Department of EnergyARPA-E
  4. Hierarchical, Layout-Aware, Radiation Effects Tools Vertically Integrated into an EDA Design Flow for Rad-Hard by Design

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    The goal of this workis to establish a radiation-aware capability in a commercial EDA design flow that will enable first-pass success in radiation resiliency for DoD ASIC designs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications.Such an integrated capability does not presently exist.The ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  5. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point ofCare Applications

    SBC: GENECAPTURE, INC.            Topic: CBD15C001

    GeneCapture, Inc. is proposing to develop a rapid in vitro diagnostic prototype using our patented molecular-based CAPTURE (ConfirmActive Pathogens Through Unamplified RNA Expression) assay. Based on the results and experience gained in our Phase I STTR contractHDTRA1-16C-0061: Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications, we p ...

    STTR Phase II 2018 Department of DefenseOffice for Chemical and Biological Defense
  6. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  7. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: DEFOA0000941

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase II 2014 Department of EnergyARPA-E
US Flag An Official Website of the United States Government