You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: ROCHESTER SCIENTIFIC LLC            Topic: AF19AT008

    Laser guide stars (LGS) are artificial sources of light produced by laser-induced fluorescence from sodium atoms in the mesosphere between 85 km and 100 km altitude. The fluorescence can be detected on the ground with a telescope and used as a reference for compensating atmospheric aberrations in astronomical and space observations in conjunction with an adaptive optics system. Sodium LGS are vita ...

    STTR Phase II 2020 Department of DefenseAir Force
  2. High Electron Mobility GaN for THz-Band Multipliers

    SBC: TOYON RESEARCH CORPORATION            Topic: AF20ATCSO1

    Toyon is proposing to develop multiplier diode technology with record power handling in the 200 – 400 GHz output frequency range using Gallium Nitride (GaN) materials. This technology is needed to effectively utilize the high pump power now available from mmWave GaN power amplifiers. GaN has inherent material property advantages including high electric field strength, electron velocity, and ther ...

    STTR Phase II 2020 Department of DefenseAir Force
  3. Reconfigurable/Cognitive Optical Communications

    SBC: VULCAN WIRELESS, INC.            Topic: AF18AT010

    As the number of optical communication terminals proliferate there will be a need to have these terminals interoperate.  In the past, optical terminals were designed with a single purpose in mind.  New space constellations are requiring non-RF crosslink solutions.  It is expected that there will be a large number of both commercial and military systems providing crosslinks and space to earth li ...

    STTR Phase II 2020 Department of DefenseAir Force
  4. Portable 3D Ultrasound Technology for Diagnosis of Traumatic Brain Injury (TBI)

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: AF19CT010

    In this Phase II STTR Project, Team UtopiaCompression (UC) will adapt its 3D ultrasound prototype device to address key research questions posed by AF TPOC and end-users (in particular, Eglin AFB Medical Community- Invisible Wounds Center, family/concussion clinics and emergency rooms). The prototype uses an innovative ultrasound design technology to capture 3D data of anatomical structures (here, ...

    STTR Phase II 2020 Department of DefenseAir Force
  5. Project OWL Phase II STTR

    SBC: OWL Integrations, Inc.            Topic: AF20ATCSO1

    A resilient network infrastructure for communications and sensing provides invaluable context for command, control, and situational awareness.  As adversaries develop sophisticated networking their ability to attack and inhibit our own similarly grows.  As a consequence, it is critical to develop innovative secure, isolated, encrypted, and self-configuring and self-healing networks that can be q ...

    STTR Phase II 2020 Department of DefenseAir Force
  6. Using explainable AI (XAI) and related technologies to reduce physician burnout and improve medical surge capacity.

    SBC: DIGITAS, LLC            Topic: AF20ATCSO1

    Physicians are highly burned out (up to 80% of physicians) and the COVID-19 pandemic is making this problem much worse; Department of Defense doctors are at higher risk (caring for more patients per capita).  Burnout may manifest itself as sustained stress; but also leads to severe effects such as physician suicides, physician drug abuse, and increased patient medical errors.  Electronic health ...

    STTR Phase II 2020 Department of DefenseAir Force
  7. ENHANCE II – Enabling Hybrid Anodes with Nano-Carbon Electrodes II

    SBC: CELLEC TECHNOLOGIES, INC            Topic: AF19AT014

    The objective of this research program is to develop an ultra-lightweight carbon nanotube-lithium metal (CNT-Li) hybrid anode to enable high energy density lithium ion cells. These CNT-Li anodes will be paired with carbon nanotube enhanced high areal loading (mAh/cm2) cathodes to achieve cell-level energy densities that exceed 400 Wh/kg at the cell-level.  Electrode engineering will be used to mo ...

    STTR Phase II 2020 Department of DefenseAir Force
  8. Virtual Reality for Multi-INT Deep Learning (VR-MDL)

    SBC: INFORMATION SYSTEMS LABORATORIES INC            Topic: AF19AT010

    A key goal stated in the United States Air Force Science and Technology Strategy for 2030 and Beyond is to “Increase the speed of battlespace understanding and decision-making to act faster than any adversary.” In this project, ISL and Ohio University (ISL-OU) will build on the success of Phase I and deliver a new game-changing capability for reliably performing complex radio frequency, multi- ...

    STTR Phase II 2020 Department of DefenseAir Force
  9. Machine Learning of Part Variability for Predictive Maintenance

    SBC: EXPERIMENTAL DESIGN & ANALYSIS SOLUTIONS, INC.            Topic: AF20ATCSO1

    High Cycle Fatigue (HCF) characterization and maintenance accounts for a significant portion of the overall life cycle cost of most military propulsion systems.  A key variable that drives HCF margin is dynamic response which is directly related to the geometry of each part.  This is especially true of integrally bladed rotors (IBRs, or blisks).  It has been well established that HCF is a proba ...

    STTR Phase II 2020 Department of DefenseAir Force
  10. Machine Learning of Part Variability for Predictive Maintenance

    SBC: EXPERIMENTAL DESIGN & ANALYSIS SOLUTIONS, INC.            Topic: AF20ATCSO1

    High Cycle Fatigue (HCF) characterization and maintenance accounts for a significant portion of the overall life cycle cost of most military propulsion systems.  A key variable that drives HCF margin is dynamic response which is directly related to the geometry of each part.  This is especially true of integrally bladed rotors (IBRs, or blisks).  It has been well established that HCF is a proba ...

    STTR Phase II 2020 Department of DefenseAir Force
US Flag An Official Website of the United States Government