You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  2. Epitaxial GaN on Flexible Metal Tapes for Low-Cost Transistor Devices

    SBC: IBEAM MATERIALS, INC.            Topic: DEFOA0000941

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2016 Department of EnergyARPA-E
  3. Recovery of Rhenium from Superalloy Scrap

    SBC: LYNNTECH INC.            Topic: OSD12T04

    Due to the limited amount of rhenium present in the earths crust (approximately 1-2 part per billion) there is a significant benefit to be realized in recovering for reuse the rhenium from scrap material, spent catalysts, or end-of-life superalloys. Rhenium is found in molybdenum-copper porphyry deposits. If rhenium is present in ore that is processed, it will show up in the resulting molybdenum ...

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  4. Information Salience

    SBC: DISCERNING TECHNOLOGIES, LLC            Topic: OSD11TD1

    Empirical-based mathematical framework and computer algorithms, for representing human perception and cognition processes and limitations, which influence the recognition of salient information about rapidly changing events.

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  5. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GENECAPTURE, INC.            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  6. Novel Screen Approach to Inactivate Whole Viral Vaccines by Supralethal Irradiation

    SBC: AGAVE BIOSYSTEMS INC.            Topic: DTRA14B002

    Future vaccine development should focus on rapid upscale production, long-term and broad protection, and sufficient global distribution to prevent and reduce the impact of many infectious diseases and potential epidemics. Agave BioSystems proposes to develop a novel whole-microorganism vaccine inactivation strategy involving high-throughput screen of extensive radio-protectant matrices and radiati ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  7. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is critical to detect the proliferation of nuclear material. Critical challenges facing this objective include: (a) high sensitivity detection of signature emissions (e.g., gamma rays) from common radioactive isotopes behind shielding, and (b) cost-effe ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  9. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Compact Laser Drivers for Photoconductive Semiconductor Switches

    SBC: ASR Corporation            Topic: DTRA16A004

    A compact laser driver will allow photoconductive semiconductor switches to be used in small EMP simulator "building blocks" (EMPBB). Combined with a battery powered on-board pulsed power system, these EMPBBs will allow the construction of flexible EMP test facilities with nothing more than a single fiber optic timing connection to each EMPBB.

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government